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ABSTRACT

The advent of Domain Specific Languages (DSL) like POF and P4 has enabled for the first

time network operators to quickly redefine how forwarding plane devices (e.g., switches)

parse and process packets in a Software-Defined Network (SDN). In this context, proper

verification of home-brewed forwarding plane software becomes paramount to avoid net-

work and service disruption due to buggy implementations. Various techniques like sym-

bolic execution, annotations, and assertions have been recently used to ensure bug-free

forwarding plane code. In spite of the potentialities, they are limited in the classes of

errors they can capture. More importantly, existing proposals for verifying forwarding

plane software often require a programmer to write additional verification code (e.g., an-

notations), an error-prone approach in itself. In this dissertation, we present the design

and implementation of P4-DATA-FLOW, a practical tool which uses data flow analysis

for verification of switch programs. We focus on the P4 language, and present experi-

ments showing that data flow analysis may reveal defects from classes not yet covered by

existing work, without demanding further programmer effort.

Keywords: P4. Programmable Network. Programmable Dataplane. Software Testing.

Data Flow Testing.



Análise do Fluxo de Dados de Código Switch P4

RESUMO

O advento de linguagens específicas de domínio como POF e P4 permitiram pela pri-

meira vez que operadores de rede pudessem prontamente redefinir como os dispositivos

de encaminhamento de dados (por exemplo, switches) interpretam e processam pacotes

em uma Rede Definida por Software (SDN). Nesse contexto, a verificação de software

para o plano de dados desenvolvido “em casa” se torna fundamental para evitar interrup-

ções na rede e no serviço devido a problemas de implementação. Várias técnicas, como

execução simbólica, anotações e asserções, foram usadas recentemente para garantir có-

digos de planos de dados programáveis livres de erros. Apesar das potencialidades, elas

são limitadas nas classes de erros que podem capturar. Mais importante, as propostas

existentes para verificação do programa de switch geralmente exigem que o programador

escreva um código de verificação personalizado (por exemplo, anotações), uma aborda-

gem propensa a erros. Nesta dissertação, apresentamos o design e a implementação do

P4-DATA-FLOW, uma ferramenta prática que utiliza a análise de fluxo de dados para veri-

ficação de programas de switch. Nós nos concentramos na linguagem P4 e apresentamos

experimentos mostrando que a análise do fluxo de dados pode revelar defeitos de classes

ainda não cobertas pelos trabalhos existente, sem exigir mais esforço do programador.

Palavras-chave: Rede programável, Plano de dados programável, Teste de Software,

Teste de fluxo de dados.
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1 INTRODUCTION

The concept of programmable forwarding planes has experienced a renewed re-

search interest since the advent of Software Defined Networking (SDN) (FEAMSTER;

REXFORD; ZEGURA, 2014; CORDEIRO; MARQUES; GASPARY, 2017). Domain-

specific languages like POF (SONG, 2013) and P4 (BOSSHART et al., 2014) now allow

network operators to redefine how forwarding devices parse and process packets, thus

enabling faster provisioning of novel and/or home-brewed protocols, and unleashing in-

novation in the forwarding plane.

In a world where network operators can redefine switch behavior by writing their

code to implement some protocol specification, proper verification and validation (V&V)

of written switch code becomes critical for adequate network operations & management

and, therefore, business continuity. In 2017, a faulty router forced Southwest Airlines to

cancel 2,300 flights over four days, resulting in $74 million loss (CAREY, 2017). The

networking community has been keen to investigate solutions to tackle software defects

before they cause such damages. Approaches like static checking (LOPES et al., 2016),

syntactic meta-data and assertions (FREIRE et al., 2018; NEVES et al., 2018; LIU et al.,

2018), symbolic execution (STOENESCU et al., 2018; FREIRE et al., 2018; NEVES et

al., 2018; LIU et al., 2018), functional testing (NöTZLI et al., 2018; ZHOU et al., 2019),

and machine learning (SHUKLA et al., 2019) have been applied to data plane software

testing. While promising, existing methods have limited coverage in terms of classes

of defects, also demanding additional programmer intervention (which can be faulty as

well) for verification. This scenario demands complementary techniques to consolidate a

broader V&V strategy for data plane software.

Take as an example the P4 code excerpt shown in Fig. 1.1 of a simple NAT and

ACL. Even a simple missing instruction like ck.update(hdr.ipv4); (in Top-

Deparser control) cannot be caught during development time without extra informa-

tion provided by the programmer (in this case, that output IPv4 packets must have a valid

checksum). There are more complex cases, however. Liu et al. (LIU et al., 2018) de-

scribed a hypothetical case inspired on a real-world situation of a Cisco product feature

update (KAZEMIAN, 2017), in which a faulty router was not enforcing ACL rules cor-

rectly. The cause of the problem was a change in the order of application of ACL rules

and NAT rules from one product version to another, which made ACL rules to be applied

after NAT rules (instead of applying them before, as it occurred in the previous version),
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Figure 1.1: Simple NAT and ACL P4 code for the very simple switch (VSS) model
(Adapted from (LIU et al., 2018)).

#include <core.p4>
#include "vss.p4"

header ethernet_t {
bit<48> dst_addr;
bit<48> src_addr;
bit<16> ether_type;

}

header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> id;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> checksum;
bit<32> src_addr;
bit<32> dst_addr;

}

struct headers {
ethernet_t eth;
ipv4_t ipv4;

}

parser TopParser(packet_in pkt, out
↪→ headers hdr) {

state start {
hdr.extract(pkt.eth);
transition select(pkt.eth.ether_type) {
0x800: parse_ipv4;
default: accept;

}
}
state parse_ipv4 {
hdr.extract(pkt.ipv4);
transition accept;

}
}

control TopDeparser(inout headers hdr,
↪→ packet_out pkt) {

Ck16() ck;
apply {
pkt.emit(hdr.eth);
if (hdr.ipv4.isValid()) {
ck.clear();
hdr.ipv4.checksum = 16w0;
hdr.ipv4.checksum = ck.get();

}
pkt.emit(hdr.ipv4);

}
}

control TopPipe(inout headers hdr, in error
↪→ parseError, in InControl inCtrl, out
↪→ OutControl outCtrl) {

action allow() { }
action deny() { outCtrl.outputPort=DROP_PORT; }
action rewrite(bit<32> src_addr, PortId port) {
hdr.ipv4.src_addr = src_addr;
outCtrl.outputPort = port;

}
table acl {
actions = { allow; deny; }
key = { hdr.ipv4.src_addr: lpm; }

}
table nat {
actions = { rewrite; }
key = { hdr.ipv4.dst_addr: lpm; }

}
apply {
if (hdr.ipv4.isValid()) {
acl.apply();
nat.apply();

}
}

}

VSS(TopParser(), TopPipe(), TopDeparser()) main;

thus breaking the correct application of configured network policies. This case is also

illustrated in Fig. 1.1, in the apply section of TopPipe control.

Examples like the one in Fig. 1.1 illustrate cases of software defects by omission,

i.e., when a protocol specification is not fully implemented in the switch code, and incor-

rect fact, when switch code behavior does not comply with its specification (TRAVASSOS

et al., 1999), respectively. Solutions like p4v (LIU et al., 2018) and ASSERT-P4 (NEVES

et al., 2018) are only able to catch them by means of programmer-provided syntactic

meta-data. The other classes of defects, ambiguity, inconsistency, and extraneous in-

formation (TRAVASSOS et al., 1999), are only partially covered without need for extra

programmer input, like in Vera (STOENESCU et al., 2018) and p4pktgen (NöTZLI et al.,

2018). In the remainder of this dissertation, we review the state-of-the-art on forwarding

plane software verification and validation (V&V) and elaborate further on the argument

that existing techniques do not properly cover the classes of software defects mentioned

earlier. From the literature review, we have also identified opportunities in the solution

space which have not been explored by previous investigations. In particular, we argue

that data flow analysis is a promising building block for designing V&V tools that do not

rely on extra programming effort to find switch bugs.

In this dissertation, we explore the potential of data flow testing to identify defects

of the different classes (see details in Section 2.2). To this end, we devise a solution

that enumerates possible execution paths within a P4 switch program specification and

analyzes the order of read/write operations performed on header fields and local variables.
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We identify potential bug situations, for example, header fields read without a prior write

operation, and then generate packets that attempt to exploit them. In case an incorrect

packet response is received, for example, a packet that should have been dropped being

forwarded, a bug is then successfully uncovered.

To assess the technical feasibility of our approach, we developed P4-DATA-FLOW,

a prototypical implementation of our solution, and evaluated it using popular P4 switch

codes publicly available. From our experiments, we confirmed the potentialities and lim-

itations of using data flow analysis as a resource to catch bugs in switch implementations

without requiring any input/effort/knowledge from the switch developer, when compared

to existing solutions. We also discuss the set of bugs detected and potential implications

to the switch operations. In summary, we make the following contributions:

• A novel approach, based on data flow analysis, for verification of switch programs

written in P4, for uncovering bugs related to inconsistency, omission, incorrect fact,

ambiguity, and extraneous information classes of defects;

• An analysis of software defects identified in popular switch implementations widely

discussed in the literature.

The remainder of this dissertation is organized as follow. In Chapter 2 we briefly

cover data flow testing aspects that are central to our work and discuss unexplored V&V

directions in the solution space. We review related work in Chapter 3. In Chapter 4 we

present our solution for data plane verification based on data flow testing, whereas in

Chapter 5 we discuss real-world use cases. We close the dissertation in Chapter 6 with

concluding remarks and directions for future work.
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2 BACKGROUND

This chapter presents the theoretical foundations used for developing this work. In

the Section 2.1 we describe the main concepts of the P4 language. Next, in the Section 2.2

we present Software Testing concepts and techniques and, finally, in the Section 2.3 we

describe the definition of Data Flow Testing.

2.1 Software Defined Networking and P4

In the past decade, network practitioners experienced a revolution in the way they

operate and manage networked systems, with the advent of Software Defined Networking

(SDN) (KREUTZ et al., 2015). Before SDN, a common practice was dealing with a mul-

titude of forwarding devices like switches, routers, and middleboxes in general, each from

a specific vendor and having proprietary management interfaces, supporting a specific set

of supported protocols, and frequently lacking interoperability. Each device had to be

configured independently for implementing global networking policies for traffic engi-

neering, routing, security, etc. Combined, these aspects severely hampered effective and

efficient network operations and management, making them a daunting and error-prone

task (KREUTZ et al., 2015).

The emergence of OpenFlow (MCKEOWN et al., 2008) changed dramatically the

state of affairs. OpenFlow provided a standard and open interface that network operators

could use to configure networking devices with flow forwarding actions based on packet

field matching. OpenFlow also enabled decoupling the network intelligence from the for-

warding device, thus fostering a logical reorganization of the network between a control

plane (where networking intelligence dwells) and a data plane (where packet handling

occurs) (HALEPLIDIS et al., 2015).

The logical separation of the network between a control and a data plane fostered

further research to enable forwarding devices to achieve higher levels of programmability.

Using OpenFlow as a common, open, and provider-independent interface, the control

layer proved indispensable to the data plane. However, to enable existing devices to

expose more of their resources to the controller, the OpenFlow specification has become

increasingly complex, adding fields and stages of rules (BOSSHART et al., 2014).

Making the data plane programmable required a novel language for expressing

the forwarding plane behavior, i.e., how it should parse and process packets. By 2013, re-
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newed ideas for data plane programmability emerged with the proposal of Reconfigurable

Match-Action tables (BOSSHART et al., 2013) and a high-level domain specific language

for redefining Match-Action tables in forwarding devices (SONG, 2013; BOSSHART et

al., 2014). One of the proposed languages was P4 (BOSSHART et al., 2014), acronym

for Programming Protocol-Independent Packet Processors. The language took shape with

the release of the first technical specification, P4_141. In 2016, a novel specification was

released, P4_162. P4 is a language that describes how a packet should be processed by the

data plane of a programmable forwarding device. Through the P4 language, it is possible

to abstract the data plane making the programming of the network equipment behavior

simpler and performed through a high-level programming language.

The P4 language is based on the protocol-independent switch architecture (PISA)

architecture. Through PISA, we have a new hardware paradigm based on a configuration

pipeline using the Match-Action model. Thus, unlike traditional ASICs, the architecture

provides great flexibility without compromising performance. Figure 2.1 presents an

overview of the process of an equipment using PISA (BOSSHART et al., 2014).

Figure 2.1: The abstract forwarding model. Source (BOSSHART et al., 2014)

As shown in Figure 2.1, packets are first handled by the parser. The parser rec-

ognizes and removes fields from the header and thus defines the protocols supported by

the switch. The extracted fields are passed to the match-action tables, divided between

input (ingress) and output (egress) stages. Although both can modify the header, match-

action ingress determines the egress ports and the queue in which the packet is placed.

Based on this processing, the packet can be forwarded, replicated, dropped or even sent
1https://p4.org/p4-spec/p4-14/v1.0.2/tex/p4.pdf
2https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
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to the control plane for further inspection. The egress match-action often performs mod-

ifications to the packet header, but may also determine the output port. The action tables

represent a stream through which a network operator may track the frame-to-frame state

and metadata information that offer details of the steps traversed by packets.

The design of a P4 program requires filling in five main PISA switch constructs

(BOSSHART et al., 2014), enumerated next:

• Headers: declaration of packet header fields, and specification of the order in which

they must be parsed. The header definition describes the sequence and structure of

a series of bit fields defined by the programmer. It may include, for example, header

field width specifications, types, and value restrictions;

• Parser: it specifies how to identify valid headers or header sequences in packets.

Also, it is responsible for analyzing and extracting packet fields;

• Tables: mechanism that performs the packet processing. Within the tables, there

are the matches and the actions to be performed;

• Actions: set of primitives used for a certain custom function, which may contain

primitives such as: copy_header, remove_header, add, etc. P4 supports construction

of complex actions built using simple, protocol independent primitives;

• Control: last part of program P4, it establishes the flow control of the tables;

The P4 switch architecture defines how the P4 programmable blocks are composed

(e.g., parser, ingress control flow, egress control flow, deparser, etc.) and define how to in-

teract with non-programmable elements. P4 programs are written for a specific switch ar-

chitecture. The simple_switch architecture is considered to be the main architecture

for most users as it is equivalent to the "abstract switch model" as described in the P4_14

specification. The v1model architecture is designed to be identical to the P4_14 switch

architecture allowing direct automatic translation of P4_14 programs to P4_16 version

programs that use the v1model architecture. In version P4_16, the language is designed

so that a number of different architectures can be considered for each different device. In

addition, the P4_16 language now also has a Portable Switch Architecture (PSA) defined

in its own specification. There is also the SimpleSumeSwitch architecture, currently

defined for programming a NetFPGA SUME.

BMv2 is the implementation of the Behavioral Model of the PISA architecture,

and this one implements a simple switch model on the specific compiler backend: p4c-

bm. Once the P4 program has been compiled, the backend will be responsible for pro-
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gramming or configuring the appropriate data plan. For example, in the case of BMv2,

the P4 program will be transformed into a JSON description as a backend output. The

JSON file, in turn, will be the entry for the BMv2 switch that will make the segmentation

of the packages at the entrance, following the guidance of what is specified in the JSON

configuration file, and then will populate the reference PISA switch pipeline tables.

The goal of the research work carried out in the scope of this dissertation is the

verification of P4 programs to identify potential bug situations. Software verification is in

the context of software testing that is described in Section 2.2.

2.2 Software Testing

Software testing is part of a broader process of software verification and valida-

tion (V & V). Verification and validation processes are concerned with checking that

software being developed meets its specification and delivers the functionality expected

by the customer. Verification and validation are different processes. Verification is usu-

ally a more technical activity to check that the software meets its stated functional and

non-functional requirements, checking that we are building the product right. Validation

usually depends on domain knowledge to ensure that the software meets the customer’s

expectations. Aims to validate that we are building the right product.(AMMANN; OF-

FUTT, 2016)

Software testing is one of the quality assurance activities designed to verify that

the product under development meets its specification (DELAMARO M. E.; JINO, 2007).

The IEEE Glossary (IEEE, 1990) define Software testing as “the process of analyzing a

software item to detect the differences between existing and required conditions (that is,

bugs) and to evaluate the features of the software items”.

Before describe how to detect software defects, we need to have some knowledge

of the different kinds of defects to be sought, as defined in Table 2.1 (TRAVASSOS et

al., 1999). This taxonomy classifies defects by identifying related sources of information,

which are relevant for the system being built.

Different types of tests can be performed to verify if a program behaves as spec-

ified and, for each type, the definition of test requirements is defined by the type of in-

formation used to perform the test. Mainly, there are two types of software testing tech-

niques: structural test and functional test as illustrated in 2.2. Functional testing, also

known as black-box testing, assesses the compliance of a system with the specified func-
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Table 2.1: Defect Classes (Source: (TRAVASSOS et al., 1999))
Defect Class General Description

Omission Necessary information about the system has been omitted
from the software

Incorrect Fact Some information in the software artifact contradicts infor-
mation in the requirements document or the general domain
knowledge

Inconsistency Information within one part of the software artifact is incon-
sistent with other information in the software artifact

Ambiguity Information within the software artifact is ambiguous, i.e.
any of a number of interpretations may be derived that
should not be the prerogative of the developer

Extraneous Information Information is provided that is not needed or used

tional requirements, regardless of the internal functioning, the code itself, focusing only

on outputs that are generated according to inputs and conditions provided. Unlike func-

tional testing, structural testing, also known as white-box testing, evaluates the internal

functioning of the system using the source code for test case generation. In this work, we

focus on the use of a structural testing technique.

Figure 2.2: V&V Techniques.

The structural test technique is based on the internal paths, structure and imple-

mentation of the program under test, that is, it requires knowledge of the code of the pro-

gram under test to be applied (AMMANN; OFFUTT, 2016). Each technique is seen as

complementary to other existing testing techniques as it covers distinct classes of defects

(DELAMARO M. E.; JINO, 2007). The information obtained by applying structural tech-

nique can assist in code maintenance and debugging activities (AMMANN; OFFUTT,

2016), because, unlike the functional technique, the test results enable analysis directly

related to the source code of the software under test.

Structural test techniques are based on different types of program concepts and

components to determine test requirements. The first structural program testing technique

used were based solely on the program control flow, the best known being: the all nodes

criterion; the all branches criterion; the all paths criterion. The all nodes criterion requires
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that all commands be executed at least once; The second, all-branch criterion, one of the

most widely used criteria, requires that all transfer of control between command blocks be

exercised at least once. The all paths criterion, in turn, requires that all possible program

paths be exercised (HOWDEN, 1978; WOODWARD M. R.; HENNEL, 1980; KING,

1976).

Subsequently, the technique based on data flow analysis of the program emerged.

Data flow analysis (HECHT, 1977) has been widely used for code optimization by com-

pilers and detection of program anomalies through static program analysis. In general, it

classifies each occurrence of a variable in the program as a definition or as a use. These

technique therefore use program data flow information to derive test requirements.

The main purpose of introducing data flow based technique is to provide a criteria

hierarchy between the all branches and all paths criteria and to make the structural test

more rigorous. From the point of view of testing embedded functions in a program,

technique that use data flow information to derive requirements and tests are better suited

than those that use only control flow information, as the former identifies data dependency

and therefore require functional segments (HOWDEN, 1986; URAL; YANG, 1988).

2.3 Data Flow Testing

To detect improper use of data values due to coding mistakes, data flow testing

can be used as a structural test criterion (MALDONADO et al., 1991). Rapps and

Weyuker proposed Def-Use Graph, which consists of an extension of the Control Flow

Graph (CFG) (RAPPS; WEYUKER, 1985). In this proposal, information is added to the

CFG about the program data flow, which identifies the associations in which a value is

assigned to a variable (called a variable definition) and where this value is read (called

a variable use). Data flow tests are generated from these associations. According to the

data flow model defined in (MALDONADO et al., 1991), whenever a value is stored in

a memory location the definition of the variable is occurring, such as when the variable

is on the left side of a command assignment or input command or procedure calls as an

output parameter.

To generate data flow tests, all sub-paths are mapped between assigning a variable

(definition) to the points at which the variable is used (use). There are two ways a variable

can be used: by computing the variable (c-uses), where a value is used in a computation

or output statement; or by using predicates (p-uses) that occurs whenever a value is used
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in a predicate statement. The notation for representing these patterns is base on (RAPPS;

WEYUKER, 1985):

• d – defined, initialized

• u – used

Three possibilities exist for the first occurrence of a variable through a program

path. The ∼ symbol is used to denote that before this the variable did not exist (RAPPS;

WEYUKER, 1985):

1. ∼d – variable does not exist, then it is defined (d)

2. ∼u – variable does not exist, then it is used (u)

3. ∼k – variable does not exist, then it is destroyed (k)

Of these three possibilities, only the first one is correct, where the variable did

not exist and then it is defined. The second is incorrect because you cannot make a safe

use of a variable unless it has been defined before and the third is probably incorrect as

well, because a variable is being destroyed before it is created. In P4 language, killing or

destroying variables is not a language construct.

Def-use paths (also called du-paths) is an ordered pair (d, u), where a statement

called d contains a definition of a variable v, which is used in a statement u in a pro-

gram (RAPPS; WEYUKER, 1985). Table 2.2 lists usage combinations and corresponding

consequences.

Table 2.2: Testing Anomalies (Source: (RAPPS; WEYUKER, 1985))

Anomaly Explanation
dd Defined and defined again Not invalid but suspicious. Potential bug.
du Defined and used Allowed. Normal case.
ud Used and defined Allowed.
uu Used and used again Allowed.

Identifying an anomaly using data flow testing does not always represent an incor-

rect result in the execution of the application. Although it could be a harmless anomaly,

it is worth investigating because it often represents a sign of programmer mistake or bad

coding practices.

A method for detecting the data flow anomalies has been developed by Fosdick

and Osterweil (FOSDICK; OSTERWEIL, 2011). The basic idea is to compute the so-

called path expressions in a flow graph by making use of data flow analysis algorithms

developed. A path expression describes all actions performed over a variable along the
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paths mapped. Anomalies in the data stream can be detected by the sequence of definitions

and uses that occur with each variable along the way.

The Figure 2.3 shows an example of how data flow analysis is performed. To the

left of the image we have an example code. The data flow graph that is generated based on

this code is illustrated in the center of the image, that is, the possible paths are mapped and

each node has the use (reading) and definition (writing) annotation that happens with each

variable. Then, the data flow analysis for each path is performed. We can see on the right

side of the image the analysis of the definition and usage sequence that happens for each

variable identified in path 1. In pairs, each occurrence of this sequence is analyzed and

verified if it can be a possible defect or not, according to what was previously described

about the possible first occurrences of the variables and the possibilities of pairs shown in

Table 2.2.

Figure 2.3: Example Data Flow Analysis.

It is important to note that the data flow test technique is most commonly applied

for unit tests, that is, tests of a program unit. However, there are already works that extend

the data flow test to integration tests (HORGAN; LONDON, 1991). For different test

levels (unitary, integration, regression) different data flow test criteria are applied, which

limit in some way the number of paths explored to identify defects. In addition, there are

also works that extend the application of this test technique to the testing of OO programs

and components. New data flow testing applications can be developed and adapted for

different programming languages. For example, procedural language and object-oriented

language are much different in the construction of def-use pairs.
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3 RELATED WORK

Network verification has shown intense research activity in the past few years.

Existing work have either approached static analysis techniques, like symbolic execution

and model checking (e.g., p4v (LIU et al., 2018), Vera (STOENESCU et al., 2018), and

ASSERT-P4 (NEVES et al., 2018)), and dynamic analysis, e.g., p4pktgen (NöTZLI et

al., 2018). Static analysis techniques are those that do not involve running the software

under evaluation, and may be used to identify defects before an executable version of the

system is available (SOMMERVILLE et al., 2007).

In order to identify relevant work in the literature, we conducted a systematic map-

ping study to capture the state-of-the-art on forwarding plane software verification and

validation. We reviewed techniques according to their verification and validation capabil-

ities, and identified research opportunities towards more reliable and secure forwarding

plane software.

3.1 Systematic Mapping Study

Systematic Literature Reviews (SLR) and Systematic Mapping Studies (SMS)

have been adopted as a research method in mature scientific fields such as Medical and

Social Sciences (KITCHENHAM; BUDGEN; BRERETON, 2015). Recently, its use has

grown in Computer Science, particularly in Software Engineering. Besides, publications

appear in other research areas including Computer Networks (PATEL et al., 2013). The

so-called secondary studies (SLR and SMS) benefits from using a research protocol what

promotes an unbiased, more auditable, and reproducible review.

With a narrower objective, SLRs aim at synthesizing evidence for a particular

research question using results from several primary studies or experiments. On the other

side, SMSs aim at producing a broad map of a particular area and informing the existing

research and challenges (gaps).

In this dissertation, we report part of an ongoing Systematic Mapping Study effort

for the area of programmable data plane, concentrating on V&V issues. In this way,

the activities of the study of definition of the research goals and questions, planning the

study and executing the review refer to the broader scope of the study which is a map of

the program area of the data plane. The study activities of the analysis of findings and

reporting detailed in this dissertation refer only to one of the research questions that is
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related to the verification and validation of P4 programs.

The process for this study follows five activities: (1) definition of the research

goals and questions; (2) planning the study, which results in the protocol described in this

section; (3) executing the review, encompassing the search and selection of sources, as

well as the extraction of information; (4) analysis of findings; and (5) reporting.

As result of the activity (1), the main goal of this study is to analyze scientific pub-

lications, technical reports, and white papers for the purpose of characterizing them, with

respect to the existing research, opportunities and open challenges on programmable data

plane, from the viewpoint of researchers in the context of academic and industrial reports.

More specifically, we aim at classifying and analyzing the literature on programmable

data plane to map the phenomenon, providing a solid overview for the state-of-the-art,

and investigating the scientific evidence and identify areas suitable for further research.

From this research goal, we defined several research questions, but in this disser-

tation we concentrate on “Which are the proposed approaches to verify and validate data

plane programs?”.

3.1.1 Search Strategy and Procedure

We performed the automated search using two digital libraries, Scopus and Google

Scholar. The first provides a wide-range of scientific peer-reviewed papers (including

IEEE and ACM venues), and the latter includes relevant technical reports and white pa-

pers. To define the search string, we adopt terms standing for the programmable data

planes domain and its applications, according to the procedure below:

• Step 1: Identification of keywords and synonyms for terms used in the research

questions.

• Step 2: Formulation of a search string combining the terms through the boolean

operators AND (main concepts) and OR (join synonyms).

• Step 3: Compare the search results against the set of 16 control papers, previously

identified in an ad-hoc literature review. The search string should be able to return

the whole set of control papers (100% coverage). Due to distinct features of search

engines, the search strings for the different libraries are semantically equivalent, but

syntactically different (see Table 3.1).

In the selection procedure, every document should be reviewed by, at least, two
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Table 3.1: Search String x Digital Library
Digital
Library

Search String Filters Criteria

Scopus TITLE-ABS-KEY ("programmable
network*" OR "programmable data
plane" OR "data plane language"
OR (P4 AND (network* OR lan-
guage OR program*)))

Title,
Abstract,
Keywords

All results

Google
Scholar

"programmable network*" OR
"programmable data plane*" OR
"data plane languages" OR (P4
AND (network* OR language OR
program*))

All fields All results until achieving
20 negative results in a
row, Use of private nav-
igation, Chrome Plugin
(NoCountryRedirect)

reviewers. The third reviewer could be used in case no consensus is reach. The proce-

dure is iterative and the level of agreement among reviewers increases as the number of

iterations grow.

3.1.2 Selection Criteria

For selecting relevant literature, we established the following set of a priori inclusion (I)

and exclusion (E) criteria:

I1 The source is in the area of Networks or Computer Science;

I2 Title and/or abstract has to explicitly mention the programmable data plane;

I3 The source is a journal or conference paper, thesis, technical report or white paper;

E1 The source is not in English;

E2 The source is an editorial or proceedings introduction;

E3 The source is not fully accessible;

E4 Duplicated sources;

After executing the search, we firstly applied these criteria to title, abstract, and

keywords. Secondly, on the remaining set, we applied them to introduction. Finally, in

the extraction phase, we applied them to the whole document.
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3.1.3 Information Extraction

The extraction procedure is organized into rounds, in which every extraction was

reviewed by another reviewer. The iterative procedure allowed us to reach a common un-

derstanding of what should be extracted for each field. The information extracted from the

selected sources include: (1) Paper identification (title, authors, venue, year, and publica-

tion type); (2) Addressed research problems; (3) V&V approaches (proposed and/or used)

for programmable data plane; (4) Applied research methods (controlled experiments; case

studies, simulations, and others); and (5) Open research challenges.

3.1.4 Quality Appraisal

After selecting sources and extracting information, we evaluate the quality of

sources using the criteria presented in Table 3.2. Thus, we discuss quality of sources

in terms of Rigor (R) of the research and Practical Relevance (P) of the proposed solution.

Table 3.2: Quality Assessment Criteria
ID Criteria Score
R1 Mathematical foundation: use of analytic modeling and/or

mathematical proofs
1pt

R2 Simulation targeting performance evaluation and scale 1pt
P3 Prototype or product provided 1pt
P4 Analysis in real-life environment 1pt
P5 Workload of real-life users 1pt

3.2 Results

We executed the searches in April 2018. From the 2.297 retrieved sources (Scopus,

Google Scolar and ad-hoc review), we excluded 144 duplicated ones. In the selection

stage, we considered 189 papers as relevant after a careful review applying the selection

criteria. Figure 3.1 shows the distribution of studies per year. So, it is possible to notice

that selected publications start in 1989. Until 2014, papers concerning programmable data

plane address technologies like Active Networks, ForCES, and FPGA implementations.

From 2015, the number of studies gradually increases, probably induced by the seminal
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paper of the P4 language (BOSSHART et al., 2014).

Figure 3.1: Distribution per year

In order to answer the research question regarding V&V approaches for data plane

programs, we identified only seven (out of 189) papers containing verification approaches

as presented in Table 3.3.

Table 3.3: Verification Approaches
Verification Approach #Sources References
Model Checking 1 (LOPES et al., 2015)
Symbolic Execution 6 (DOBRESCU; ARGYRAKI, 2014)

(FREIRE et al., 2017) (FREIRE
et al., 2018) (STOENESCU et al.,
2018) (LIU et al., 2018) (NöTZLI
et al., 2018)

Symbolic execution and model checking are static analysis techniques. Static anal-

ysis techniques are system verification techniques that do not involve executing the pro-

gram. Rather, they work on a source representation of the software either a model of the

specification or design, or the source code of the program. Static analysis techniques can

be used to check the specification and design models of a system to pick up defects before

an executable version of the system is available. (SOMMERVILLE et al., 2007).

The model checking process involves building a formal model of a system. A set

of desirable system properties are identified and written in a formal notation. The model

checker then explores all paths through the model (i.e., all possible state transitions),

checking if the property holds for each path. If it does, then the model checker confirms

that the model is correct with respect to that property. If it does not hold for a particular

path, the model checker outputs a counter-example illustrating where the property is not

satisfied.

Network Optimized Datalog (NoD) (LOPES et al., 2015) is a work in the category

of static analysis that uses model check. NoD is a network verification tool in which
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operators may express beliefs about the network using Datalog (high-level invariants,

like “the print server can only be accessed from the intranet”), and verify them through

analysis of forwarding tables and ACLs.

Model checking is computationally very expensive because it uses an exhaustive

approach to check all paths through the system model. As the size of the system increases,

the number of states also increases, and a consequent increase in the number of paths to

check is expected. This means that, for large systems, model checking may be impractical,

due to the computer time required to run the checks. One could provide more abstract

models, however they would not allow in-depth analysis.

Another test strategy is symbolic execution. The key idea behind symbolic exe-

cution (KING, 1976; CLARKE, 1976) is to use symbolic values instead of concrete data

as input and to represent the values of program variables as symbolic expressions over

the symbolic input values. As a result, the output values computed by a program are ex-

pressed as functions of the symbolic input values. In software testing, symbolic execution

is used to generate a test input for each execution path of a program. An execution path

is a sequence of true and false, where a value of true (respectively false) at the ith position

in the sequence denotes that the ith conditional statement encountered along the execution

path took the “then” (respectively the “else”) branch. All the execution paths of a program

can be represented using a tree, called the execution tree.

Dobrescu and Argyraki (DOBRESCU; ARGYRAKI, 2014) have used symbolic

execution with S2e (CHIPOUNOV; KUZNETSOV; CANDEA, 2011) to analyze imple-

mentations of Click modular router elements (KOHLER et al., 2000). One of the key

challenges of symbolic execution is the huge number of programs paths in all but the

smallest programs, which is usually exponential in the number of static branches in the

code. As a result, given a fixed time budget, it is critical to explore the most relevant

paths first (CADAR; SEN, 2013). First of all, symbolic execution implicitly filters out

all paths which (1) do not depend on the symbolic input, and (2) are unreachable given

the current path constraints. Despite this filtering, path explosion represents one of the

biggest challenges when adopting symbolic execution for general-purpose languages.

There are also solutions that rely on code annotations for static verification. As-

sertion testing is the insertion of formal statements into the program to be validated, as

if they were code comments (SOMMERVILLE et al., 2007). The expression is formally

presented as an assertion, along with some form of identifier, to help testers and engineers

ensure that tests of the target relate properly and clearly to the corresponding specified
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statements about the target. For example, an assertion might be included stating that the

value of some variable must lie in the range x..y. The analyzer symbolically executes the

code and highlights statements where the assertion may not hold.

ASSERT-P4 (NEVES et al., 2018) enables developers to write assertions into P4

code that specify network correctness properties. The program and assertions are then

translated into C models and verified using symbolic execution. p4v (LIU et al., 2018)

also proposes that developers annotate programs with Hoare logic clause (pre and post

conditions) to enable static verification. In Fig. 3.2 we can see an overview of how this

technique works.

Figure 3.2: Assertion overview (Adapted from (NEVES et al., 2018))

Assertion test technique can be tailored to check for well-known problems, how-

ever it is not efficient to identify defects that we have no prior knowledge. In order to be

able to perform assertion testing, it is necessary for the programmer to know in advance

the defect he or she seeks to identify, so that he or she can annotate the code with the

assertion and thus possibly identify the defect.

Both ASSERT-P4 and p4v demand additional developer effort to express the as-

pects that must be verified (assertions), an error-prone approach. More importantly, if

some critical network property is not specified (omitted) through an assertion in the code,

it will be left unverified.

On the other hand, Vera (STOENESCU et al., 2018) is another static verification

tool that uses symbolic execution to test the behavior of P4 programs. For this, it checks

a snapshot of a running P4 program and, unlike p4v and ASSERT-P4, it does not require

annotations. A snapshot represents the full state of all the match and action tables manip-

ulated by a P4 program in a given moment in time. This tool uses the parser of the P4

program and a snapshot of all its table rules to generate all parsable packet layouts (e.g.

header combinations), and makes all header fields symbolic (i.e. they can take any value).

It then tracks the way these packets are processed by the program, following all branches



29

to completion.

Vera can do a comprehensive set of tests for any rule snapshot in the table, but

a single snapshot does not cover all the possible rules that can be inserted. Even if a

snapshot of a P4 program is bug free, there is no guarantee that it will be true for other

snapshots. It is impractical to perform sample-space testing of all possible rule table

snapshots. In addition, the match-action table changes all the time, making snapshots that

have been tested no longer valid. In order to be able to identify difficult defects with Vera,

it is necessary for the programmer to be very experienced and to choose carefully the rules

that will compose a snapshot, otherwise the defect path will not be executed making this

approach not scalable.

In the realm of dynamic analysis, p4pktgen (NöTZLI et al., 2018) is a tool for

generate test packets. It also uses symbolic execution to generate test packets and predict

the expected output using bmv2 for assessing the behavior of a P4 program. This approach

may even uncover bugs in the compiler and the software switch. In addition, on the

downside, it requires switch deployment for testing and may not scale well for large-scale

and complex programs.

The different software verification and validation techniques are complementary.

Under no circumstances they should be regarded as redundant activities. Both have differ-

ent natures and objectives, capturing different classes of defects, strengthening the failure

detection process and increasing the resulting software quality.

From this systematic review, it was possible to identify that the existing works

of verification and validation of P4 programs explore in different ways the techniques of

model checking and symbolic execution. An important disadvantage common to these

verification techniques is that they cannot cover the omission class of defects unless ad-

ditional code is written by the developer for assertion-based solutions. One testing tech-

nique not yet explored for P4 program verification is Data Flow Analysis, which covers

the identification of some defects classified as omission and incorrect fact. Next chapter

introduces a solution that uses the Data Flow Analysis technique to verify P4 programs.
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4 P4 DATA FLOW ANALYSIS

This chapter explains the P4-DATA-FLOW verification process. We present our

approach for using data flow analysis to uncover bugs in P4 switch programs, using

Fig. 4.1 as basis. We describe in Section 4.1 how JSON is generated based on a P4

program and how the control flow graph is generated. In Section 4.2 is described how

data flow analysis is performed and finally, the generation of data to perform the test to

confirm the defect is described in Section 4.3.

Figure 4.1: P4 switch code data flow analysis overview.

4.1 Solution Overview

Our approach uses a JSON specification of the switch code, therefore the first

step in our verification process is the generation of a JSON specification from a P4 pro-

gram. The JSON file we use is the one expected by BMv2 behavioral model, a software

switch model popularly used to evaluate the functionalities of a P4 program specification.

To generate the JSON file the following line of code is used: "p4c-bm2-ss -p4v 16

-p4runtime-files build/SOURCE.p4.p4info.txt -o build/OUTPUT.

json SOURCE.p4", where SOURCE refers to the file name P4 and OUTPUT the name

of the output JSON file.

Implementations of P4 programs that are in version P4_14 need to be converted to

version P4_16. For that we use the P4 p4test tool to convert P4_14 codes to P4_16.

On the left side of the Fig. 4.2 it is possible to see a code snippet basic.p4 and on

the right side of the Fig. 4.2 it is possible to check the same code snippet generated in

JSON.
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Figure 4.2: basic.p4 switch code snippet

/* -- P4_16 -- */
#include <core.p4>
#include <v1model.p4>

const bit<16> TYPE_IPV4 = 0x800;

/*************************
***** H E A D E R S *****
*************************/

typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;

header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;

}

{
"program" : "basic.p4",
"_meta_" : {
"version" : [2, 7],
"compiler" : "https://github.com/

↪→ p4lang/p4c"
},
"header_types" : [
{
"name" : "scalars_0",
"id" : 0,
"fields" : []

},
{
"name" : "ethernet_t",
"id" : 1,
"fields" : [
["dstAddr", 48, false],
["srcAddr", 48, false],
["etherType", 16, false]

]
},

Based on the JSON specification, we then generate the control flow graph of the P4

program. This graph contains every possible execution path within the P4 specification.

To illustrate, the control flow graph depicted in Fig. 4.3, from the basic.p4 switch code1,

shows eight possible execution paths.

Figure 4.3: Control flow graph for the basic.p4 switch program.

For each possible path, we run data flow analysis. This process (detailed in the

lower part of Fig. 4.1) generates a report indicating path expressions on each variable and

header fields, as well as identified anomalies on path expressions according to the theory

of data flow analysis. As a report with data flow analysis of all variables in all paths can

be impractical to analyze manually, the argument -s can be used in the line of execution

and thus, the issued report returns only the paths where they were cases of possible bugs

were identified, that is, variables that were used without first being written or variables

that had two consecutive writes.

The Fig. 4.4 shows the path expressions obtained for the execution path high-

lighted in dotted lines and gray ellipses in Fig. 4.3. As an example, take the path ex-
1The basic.p4 switch source code was obtained from the tutorials available at the official P4 language

github repo. A copy of the file can be found at <https://github.com/diogocampos/p4-data-flow/blob/master/
examples/basic.p4>

https://github.com/diogocampos/p4-data-flow/blob/master/examples/basic.p4
https://github.com/diogocampos/p4-data-flow/blob/master/examples/basic.p4
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Figure 4.4: An example of path expressions obtained for the basic.p4 switch code, for the
path highlighted in Fig. 4.3. In the excerpt above, P means parameter passing. Note that
the execution path above follows the JSON notation generated by the p4c compiler for
bmv2 simple switch model.

Execution Path:
0 -> parsers/start -> parsers/parse_ipv4 -> parsers/null -> ingress/node_2 ->

↪→ ingress/MyIngress.ipv4_lpm -> ingress/MyIngress.ipv4_lpm/MyIngress.
↪→ ipv4_forward -> ingress/null -> egress/null -> compute_checksum -> deparsers

DF_Table:
standard_metadata

egress_spec: D
ethernet

dstAddr: DUDU
srcAddr: DDU
etherType: DUU

ipv4
version: DUU
ihl: DUU
diffserv: DUU
totalLen: DUU
identification: DUU
flags: DUU
fragOffset: DUU
ttl: DUDUU
protocol: DUU
hdrChecksum: DDU
srcAddr: DUU
dstAddr: DUUU
$valid$: UU

MyIngress.ipv4_forward
dstAddr: PU
port: PU

pression of field ipv4.ttl: DUDUU highlighted in red in Fig. 4.4. The first define

(D) occurs during packet.extract(hdr.ipv4); header extraction. Then, a use

(U) followed by define occur on hdr.ipv4.ttl = hdr.ipv4.ttl - 1;. Finally,

two uses occur for compute checksum and packet deparsing.

There are cases of variable used but never defined, which are reported as bugs. For

other potential bugs reported, these are used as input for generating test packets. In this

step, we deploy the JSON specification on BMv2 software switch, and inject test packets

that attempt to exploit the anomalous path expressions. The test packets are carefully

designed to explore the execution flow causing the anomalous path expression, and exer-

cise it. In case an abnormal switch behavior occurs (e.g., a packet that should have been

dropped is forwarded, or a packet is silently dropped), then a bug is revealed.

Having provided an overview of our solution, next we describe in more detail the

data flow analysis process and the automated generation of test packets. In our work, we

assume without loss of generality the use of the V1Switch model, which is composed

of a parser, verify checksum, ingress, egress, compute checksum, and deparser blocks.

However, using the same methodology that is being proposed it is possible to implement
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a functional solution for any of the existing architectures.

4.2 P4 JSON Data Flow Analysis

The analysis of each execution path within a P4 switch code comprises processing

each of the switch components over that path: header definitions, parser, and controls, as

shown in the tasks depicted in the lower part of Fig. 4.1. The process carried out in each

task is described in the algorithms discussed next.

All algorithms were developed based on the behavioral model of the JSON format2

that shows the specification of the JSON fields. Algorithm 1 shows the routine for header

analysis. In summary, we fetch the headers declaration from the JSON file and, for each

header, we extract its fields and store them in a definition table (DF_Table). This is a

global table we use to check path expressions in each header and metadata field.

Algorithm 1 Header Analysis
1: Fetch headers declaration in JSON file
2: for each declared header do
3: Find header in the JSON header_type specification
4: Store in DF_Table each field from the header

After the extraction of the header definitions, the next step is processing the switch

parser. The routine, depicted in Algorithm 2, is responsible for applying the effects of the

JSON parser definitions into extracted header fields. Given the switch parser is a finite

state machine, the first step in the algorithm is finding the initial parser state. While next

state is not null, we search for the state operation (lines 4-24) and transition (lines 25-34).

The state operation could be:

• extract (lines 6-9): Applied to a packet, it populates a header with the next sizeof

header bits from the packet stream. An example from the basic.p4 code is packet.

extract(hdr.ethernet);

• set (lines 10-19): The set() method is an assignment, written with the = sign. It

first evaluates its left sub-expression to an l-value, then its right sub-expression to a

value, and finally copies the value into the l-value;

• verify (lines 20-24): The verify() statement provides a simple form of error

handling. Verify can only be invoked within a parser. If the first argument is true,
2The JSON behavioral model can be found at <https://github.com/p4lang/behavioral-model/blob/

master/docs/JSON_format.md>

https://github.com/p4lang/behavioral-model/blob/master/docs/JSON_format.md
https://github.com/p4lang/behavioral-model/blob/master/docs/JSON_format.md


34

Algorithm 2 Parser Analysis
1: Fetch parsers declaration in JSON file
2: Find init_state in the JSON parse_states tuple
3: repeat
4: Find parser_ops
5: for each declared parser_ops do
6: if “op” : “extract” then
7: Find parameters in tuple parser_ops
8: if "type" : "regular" then
9: Append ‘D’ to all fields of value structure

10: else if “op” : “set” then
11: Find first item of tuple parameters
12: Append ‘D’ to the value field
13: Find second item of tuple parameters
14: if “type” : “field” then
15: Append ‘U’ to the value field
16: else if “type” : “expression” then
17: for each value tuple item do
18: if “type”:“field” or “type”:“runtimedata” then
19: Append ‘U’ to the value field
20: else if “op” : “verify” then
21: Find first item of tuple parameters
22: for each value tuple item do
23: if “type”:“field” or “type”:“runtimedata” then
24: Append ‘U’ to the value field
25: Find transition_key in tuple parser_states
26: for each declared transition_key do
27: if “type” : “field” then
28: Append ‘U’ to the value field
29: Find transitions in tuple parser_states
30: for (each declared transitions do
31: if “type” : “hexstr” then
32: if match then
33: if “next_state” != null then
34: find next_state in tuple parser_states
35: until next_state != null
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then executing the statement has no side-effect. However, if the first argument is

false, it causes an immediate transition to reject, which causes immediate parsing

termination; at the same time, the parserError associated with the parser is set to the

value of the second argument.

After processing the parser, we proceed to the analysis of the verify checksum

control. In summary, it checks for calculations and then populates the DF_Table with

respective usage and definitions. We then move to the ingress analysis, whose routine is

depicted in Algorithm 3. The routine starts by fetching the ingress in the JSON pipeline

declaration (line 1). Then, it fetches the initial table and its keys (lines 3-6). For each

matching case (line 9), we process each of the possible actions defined within that table

(lines 10-22). We also process the default case, in which there is no match (lines 23-34).

In case a table is not directly found (line 35), we fetch a conditional that could

be present (lines 37-41), and then explore the next state that can be reached. In case the

conditional cannot be evaluated based on the DF_Table state, we explore both states

from the conditional.

Following the pipeline depicted in the lower part of Fig. 4.1, we proceed to the

egress analysis, whose routine is depicted in Algorithm 4. The algorithm is very similar

to the ingress algorithm, where the only difference is that the routine starts by fetching

the egress in the JSON pipeline declaration (line 1).

After the egress analysis occurs the compute checksum control, whose follows a

logic similar to the verify checksum discussed earlier. Finally, we move to the analysis

of the deparser control. The routine is depicted in Algorithm 5. In summary, for each

deparser declaration in the JSON file, we process it by updating the DF_Table with

each usage definition found.

4.3 Test Packet Generation

The output of the data flow analysis step is a list of potential bugs. Potential bug

means that it has the capacity to become a bug in the future, after confirmation. Thus, the

last step of the proposal is to check for these potential bugs in order to confirm if they are

really bugs in the program.

For exercising such cases, we use the P4 packet test framework (PTF)3. We use

3PTF GitHub repo: <https://github.com/p4lang/ptf/>

https://github.com/p4lang/ptf/
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Algorithm 3 Ingress Analysis
1: Fetch ingress in pipelines declaration in JSON file
2: if "init_table" != null then
3: Find init_table in the JSON tables tuple
4: repeat
5: if table found then
6: Find key in tables tuple
7: if "match_type" != "valid" then
8: Append ‘U’ to the target field
9: if match_type true then

10: Select one action in ingress tuple
11: Find action in actions tuple
12: Store in DF_Table each runtime_data item
13: Append ‘D’ to each runtime_data item
14: for each primitives in action tuple do
15: if “op” : “assign” then
16: Find second item in parameters tuple
17: Append ‘U’ to the value field
18: Find first item in parameters tuple
19: Append ‘D’ to the value field
20: else if “op” : “drop” then
21: Append ‘D’ to the egress_spec field
22: else if match_type false then
23: Find default_entry in tables tuple
24: Find action_id in actions tuple
25: Store in DF_Table each runtime_data item
26: Append ‘D’ to each runtime_data item
27: for each primitives in action tuple do
28: if “op” : “assign” then
29: Find second item in parameters tuple
30: Append ‘U’ to the value field
31: Find first item in parameters tuple
32: Append ‘D’ to the value field
33: else if “op” : “drop” then
34: Append ‘D’ to the egress_spec field
35: else if table not found then
36: Find init_table in conditionals tuple
37: if left != null in expression then
38: Append ‘U’ to the value field
39: else if left : null in expression then
40: Find right in expression
41: Append ‘U’ to the value field
42: if conditional = true then
43: Find true_next state in the JSON tables tuple
44: else
45: Find false_next state in the JSON tables tuple
46: until next_state != null
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Algorithm 4 Egress Analysis
1: Fetch egress in pipelines declaration in JSON file
2: if "init_table" != null then
3: Find init_table in the JSON tables tuple
4: repeat
5: if table found then
6: Find key in tables tuple
7: if "match_type" != "valid" then
8: Append ‘U’ to the target field
9: if match_type true then

10: Select one action in ingress tuple
11: Find action in actions tuple
12: Store in DF_Table each runtime_data item
13: Append ‘D’ to each runtime_data item
14: for each primitives in action tuple do
15: if “op” : “assign” then
16: Find second item in parameters tuple
17: Append ‘U’ to the value field
18: Find first item in parameters tuple
19: Append ‘D’ to the value field
20: else if “op” : “drop” then
21: Append ‘D’ to the egress_spec field
22: else if match_type false then
23: Find default_entry in tables tuple
24: Find action_id in actions tuple
25: Store in DF_Table each runtime_data item
26: Append ‘D’ to each runtime_data item
27: for each primitives in action tuple do
28: if “op” : “assign” then
29: Find second item in parameters tuple
30: Append ‘U’ to the value field
31: Find first item in parameters tuple
32: Append ‘D’ to the value field
33: else if “op” : “drop” then
34: Append ‘D’ to the egress_spec field
35: else if table not found then
36: Find init_table in conditionals tuple
37: if left != null in expression then
38: Append ‘U’ to the value field
39: else if left : null in expression then
40: Find right in expression
41: Append ‘U’ to the value field
42: if conditional = true then
43: Find true_next state in the JSON tables tuple
44: else
45: Find false_next state in the JSON tables tuple
46: until next_state != null
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Algorithm 5 Deparser Analysis
1: Fetch deparsers declaration in JSON file
2: for each declared order do
3: Append ‘U’ to all values field of this packet

this framework to confirm the possible bugs we have identified, but this framework is not

part of our proposal. In summary, we deploy the switch code using bmv2, populate its

tables with a minimal set of rules that exercise the path to be explored, and send a set

of test packets, fixing to zero/undefined such suspicious cases. In case the packet is not

processed according to the expected outcome (e.g., forwarded when it should have been

dropped), then the bug is confirmed.

It is important to emphasize that only a small subset of bugs reported need this

closer inspection using such structural testing technique. These are the cases, for example,

of variables which are defined twice without a use in between (i.e., its path expression has

a DD sub-sequence). The rationale is that the occurrence of a variable that is written twice

could indicate an issue in the switch programming logic.

Among all stages of the P4 switch code data flow analysis, illustrated in the

Fig. 4.1, this generate test input data step is the only step that has manual effort to gener-

ate the package using PTF and after validating if the possible bug is really confirmed. All

previous steps of the proposal are carried out automatically by our tool.

About test packet generation, our current focus is exploring data flow analysis for

P4 program verification. We are investigating how to determine heuristics to automate

test case generation based on the outcome of potential bugs, possibly using Header Space

Analysis (HSA) or symbolic execution.
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5 EVALUATION

We implemented a prototype of our solution, P4-DATA-FLOW, using python 3.7.

Our prototype has around 450 lines of code, and is available on GitHub1. In our evalu-

ation, we considered many switch implementations publicly available, mainly from the

official P4 repo2. In Table 5.1, we present a summary of some of the switches tested

and bugs found. Our verification times were measured on a ultra-book with Intel Core

i7-8550U CPU @ 1.80GHz and 16 GB of RAM, running Ubuntu 16.04.

Table 5.1: Switch programs used in our evaluation and bugs found
Program Size

(LOC)
Version Number of

Execution
Paths

Verification
Time (sec)

Omission Incorrect
Fact

simple_nat 363 P4_14 6,300 3.64 X X
load_balance 226 P4_16 60 0.02 X
flowlet_switching 163 P4_16 1,458 3.50 X
checksum 118 P4_14 18 0.12 X

Since many of these implementations were available on P4_14, we used the P4

p4test tool to convert them to P4_16. We then used p4c-bm2-ss for P4_16 to JSON code

conversion. The original switch codes tested, their code converted P4_16, as well as

generated JSON files and verification output, are also available in our repository. Finally,

we used bmv2, ptf, and scapy for exercising and confirming potential bugs.

5.1 Simple NAT

Our first experiment is the simple_nat program, which implements a NAT box

with IPv4 support. Using P4-DATA-FLOW, we found three bugs in its implementation.

Fig. 5.1 shows execution paths (and respective path expressions of header fields) related to

two of these bugs. The first one refers to the possibility of packets without a IPv4 header

being processed by the ipv4_lpm table. Observe in the first execution path that after pars-

ing the Ethernet header (parsers/ethernet), the parser goes to the exit state (parsers/null).

This is the case of the path default: accept; in the transition select

(hdr.ethernet.etherType), as one can see in the simple_nat-16.p4 code avail-

able in our repo. Later in the execution path (ingress/node_4 -> ingress/ipv4_lpm), a

1P4-DATA-FLOW GitHub repo: <https://github.com/diogocampos/p4-data-flow/>
2Official P4 GitHub repo: <https://github.com/p4lang/>

https://github.com/diogocampos/p4-data-flow/
https://github.com/p4lang/
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buggy conditional allows the packet without a valid IPv4 header to be processed by the

ipv4_lpm table.

The faulty code in this case is if (meta.meta. do_forward == 1w1 &&

hdr.ipv4.ttl > 8w0). From the P4_16 specification3, header fields that are not

defined prior to use could have an undefined value and therefore lead the switch to

an abnormal behavior. In fact, after exercising the bug using PTF, we found that a

packet without IPv4 header that should have been dropped was actually forwarded by

the switch (software defect due to incorrect fact). To prevent it, the authors of the sim-

ple_nat switch code should have checked the validity of the IPv4 header, using the method

hdr.ipv4.isValid().

The second bug is related to TCP header fields not extracted but NATed anyway.

Note in the second execution path in Fig. 5.1 that the IPv4 header is parsed, but not

the TCP header (parsers/parse_ethernet -> parsers/parse_ipv4 ->

parsers/parse_null). Then, in egress/send_frame, action do_rewrites is

triggered without a check if the TCP header is valid (a software defect by omission).

Finally, the third bug found is related to a use of the IPv4 TTL field without a prior defi-

nition (incorrect fact), causing a wrong apply in the ipv4_lpm table.

5.2 Load Balance

Our second experiment is the load_balance switch from the official P4 tutorial.

In Fig. 5.2 we present one execution path with a faulty code. Before applying the ta-

ble ecmp_group, the authors do not check if the packet has a valid TCP header. In

action set_ecmp_select, a hash function is applied over srcAddr, dstAddr, and pro-

tocol fields of the ipv4 header, and srcPort and dstPort fields of the tcp header; the result

of the hash function is stored in meta.ecmp_select. Since hdr.tcp.srcPort

and hdr.tcp.dstPort are undefined in the execution path shown in Fig. 5.2, the re-

sult of the hash, and therefore variable meta.ecmp_select, becomes undefined. The

meta.ecmp_select is later used to determine which path the packet should follow.

In our experiment, the packets were forwarded to a same switch.

3P4_16 specification: <https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html>

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
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Figure 5.1: Execution paths with faulty behavior in the simple_nat switch implementa-
tion.

0 -> parsers/start -> parsers/parse_cpu_header -> parsers/parse_ethernet -> parsers/
↪→ null -> ingress/if_info -> ingress/if_info/set_if_info -> ingress/nat ->
↪→ ingress/nat/nat_hit_ext_to_int -> ingress/node_4 -> ingress/ipv4_lpm -> ingress
↪→ /ipv4_lpm/set_nhop -> ingress/forward -> ingress/forward/set_dmac -> ingress/
↪→ null -> egress/node_9 -> egress/send_to_cpu -> egress/send_to_cpu/do_cpu_encap
↪→ -> egress/null -> compute_checksum -> deparsers

ethernet
dstAddr: DDU

ipv4
version: UU
ihl: UU
diffserv: UU
totalLen: UU
identification: UU
flags: UU
fragOffset: UU
ttl: UUDUU
protocol: UUU
srcAddr: UUU
dstAddr: UUU

tcp
srcPort: UU
dstPort: UU
seqNo: UU
ackNo: UU
dataOffset: UU
res: UU
flags: UU
window: UU
urgentPtr: UU

0 -> parsers/start -> parsers/parse_cpu_header -> parsers/parse_ethernet -> parsers/
↪→ parse_ipv4 -> parsers/null -> ingress/if_info -> ingress/if_info/set_if_info ->
↪→ ingress/nat -> ingress/nat/nat_hit_int_to_ext -> ingress/node_4 -> ingress/
↪→ ipv4_lpm -> ingress/ipv4_lpm/set_nhop -> ingress/forward -> ingress/forward/
↪→ set_dmac -> ingress/null -> egress/node_9 -> egress/send_frame -> egress/
↪→ send_frame/do_rewrites -> egress/null -> compute_checksum -> deparsers

ethernet
dstAddr: DDU

ipv4
hdrChecksum: DDU

tcp
seqNo: UU
ackNo: UU
dataOffset: UU
res: UU
flags: UU
window: UU
urgentPtr: UU

Figure 5.2: Faulty behavior in the load_balance switch code.

0 -> parsers/start -> parsers/parse_ipv4 -> parsers/null -> ingress/node_2 -> ingress/
↪→ MyIngress.ecmp_group -> ingress/MyIngress.ecmp_group/MyIngress.set_ecmp_select
↪→ -> ingress/MyIngress.ecmp_nhop -> ingress/MyIngress.ecmp_nhop/MyIngress.
↪→ set_nhop -> ingress/null -> egress/MyEgress.send_frame -> egress/MyEgress.
↪→ send_frame/MyEgress.rewrite_mac -> egress/null -> compute_checksum -> deparsers

ethernet
dstAddr: DDU
srcAddr: DDU

ipv4
hdrChecksum: DDU

tcp
srcPort: U
dstPort: U
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Figure 5.3: Faulty behavior in the flowlet switching code.

0 -> parsers/start -> parsers/parse_ethernet -> parsers/null -> ingress/ingress.
↪→ flowlet -> ingress/ingress.flowlet/ingress.lookup_flowlet_map -> ingress/node_3
↪→ -> ingress/ingress.new_flowlet -> ingress/ingress.new_flowlet/ingress.
↪→ update_flowlet_id -> ingress/ingress.ecmp_group -> ingress/ingress.ecmp_group/
↪→ ingress.set_ecmp_select -> ingress/ingress.ecmp_nhop -> ingress/ingress.
↪→ ecmp_nhop/ingress.set_nhop -> ingress/ingress.forward -> ingress/ingress.
↪→ forward/ingress.set_dmac -> ingress/null -> egress/egress.send_frame -> egress/
↪→ egress.send_frame/egress.rewrite_mac -> egress/null -> compute_checksum ->
↪→ deparsers

ipv4
version: UUU
ihl: UUU
diffserv: UUU
totalLen: UUU
identification: UUU
flags: UUU
fragOffset: UUU
ttl: UDUUU
protocol: UUU
hdrChecksum: DDU
srcAddr: UUU
dstAddr: UUUU

5.3 Flowlet Switching and Checksum P4

We also evaluated the flowlet switching (SINHA; KANDULA; KATABI, 2004)

and checksum implementations available in the official P4 GitHub repo. In the flowlet

switching execution path shown in Fig. 5.3, there are path expressions in which ipv4 and

tcp header fields are used but never defined.

The problem in the flowlet switching program, which also applies to the checksum

program, is an unverified IPv4 and TCP header validity before applying a hash function.

As a result, it becomes unstable. Similarly to the load balance, a simple solution would be

testing isValid() before applying any tables that access those header fields, like the

flowlet, ecmp_group, and ecmp_nhop tables in flowlet switching.

5.4 Comparative Analysis

In this section we describe the results of the comparison carried out on the types

of defects identified by the existing P4 code verification tools and P4-DATA-FLOW.

Assertion-based verification requires previous knowledge on the types of defect.

By understanding how each defect type can manifest in a P4 code excerpt, P4 developers

can correctly implement the assertion to identify the presence of the defect instance in the

verified code. The lack of such knowledge implies on the lack of such assertion. Thus, this

verification approach cannot be fairly compared with automated verification techniques
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such as data flow analysis. In other words, assertions need human intervention, with

developers deliberately inserting additional code (the assertion itself). On the other hand,

automated verification based on static analysis does not. Finally, assertions also need

to be verified, as developers could insert defects, by mistake, in the assertion code. In

this respect P4-DATA-FLOW has an advantage as it identifies defects in P4 codes without

having any prior knowledge of existing defects.

Vera (STOENESCU et al., 2018) uses snapshot verification without the need to

insert assertions to identify defects. As it is not open for community use, we contacted

the authors and asked them to make the Vera tool source code available so that we could

run it on the same P4 programs verified with P4-DATA-FLOW so that we could compare

the captured defects. In addition, we requested the P4 programs they use to evaluate their

tool, as the currently published codes are no longer in the same version that was used in

their validation. After several attempts, we received no feedback. So, the quantitative

comparison of the Vera tool with P4-DATA-FLOW could not be performed.

For the reasons above, we perform a qualitative analysis to carry out this com-

parison between the defects identified by each work, as can be seen in the Table 5.2. It

analyzes whether the defects identified by the related works are likely to be identified by

our tool and vice-versa.

5.4.1 Comparison with ASSERT-P4

First, we performed a qualitative analysis of the defects identified by ASSERT-P4

in order to assess whether our tool, P4-DATA-FLOW, would also be able to identify the

same defects. ASSERT-P4 (NEVES et al., 2018) performed tests on four P4 program

codes. The first code used for testing is the Dapper implementation (GHASEMI; BEN-

SON; REXFORD, 2017). The defect identified in the Dapper implementation regards

the verification if the TTL field is greater than zero for the packet to be forwarded. P4-

DATA-FLOW may not identify it because its strategy concerns only defects in the data

flow, not taking actual values of variables into account. The second test was performed

on the NetPaxos (DANG et al., 2016) code that is a network-based implementation of

the Paxos consensus protocol. Regarding the defect identified in the implementation of

NetPaxos, valid packets being dropped because the packets are first marked to be dropped

by another action, and not unmarked by the voting actions. Our solution also does not

identify this defect because there is no violation of the data flow in this situation, such



44

Table 5.2: Qualitative Analysis
Tool Verification

Mechanism
Program Defect P4-DATA-

FLOW
catches?

Assert-P4 Assertion

Dapper TTL field is greater than zero No
Netpaxos Valid packets being dropped No

Switch
Modification of a field of an
invalid header

Yes

Tunnel encapsulation Yes

p4v Assertion
Switch

Parsed packets not supported
by the rest of the pipeline

Yes

Order-of-operations error Yes
Tables that incorrectly al-
lowed the nop action

No

Erroneously read the in-
ner_ethernet header

No

Multi-table constraints No
NetCache Implementation of the put op-

eration
No

Netpaxos Valid packets being dropped No

Vera Snapshots Switch

Implicit drops No
Table rules that match
dropped packets

No

Invalid memory accesses Yes
Header errors Partially
Scoping and unallowed
writes

No

Out-of-bounds array accesses Yes
Field overflows/underflows No

as reading a variable without ever reading it or two consecutive writes of a variable. A

third test was performed with ASSERT-P4 in the DC.p4 (SIVARAMAN et al., 2015)

code that implements the behavior of a data center switch. In this test, the authors did

not identify any defects, they only checked that the L3 ACL only flags packets to be fil-

tered by another module in the system, which must also be appropriately configured. The

fourth and last test performed was in the code of the Switch (P4. . . , 2018) program. In

this code, the authors sought to identify two known defects by inserting assertions. The

first defect founded regards the modification of a field of an invalid header. The second

defect regards tunnel encapsulation, where encapsulated headers are overwritten when-

ever multiple nested levels are present. In our qualitative analysis, we understand that

P4-DATA-FLOW can capture the same two defects. As for both defects there are two con-

secutive write operations in a same variable without a read operation before the second
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write.

After this stage of the qualitative analysis, where we compared the defects iden-

tified by ASSERT-P4, we performed the analysis of the defects identified by our tool,

P4-DATA-FLOW, in order to verify whether ASSERT-P4 would also be able to identify

the same defects. As ASSERT-P4 is a tool that uses assertions to identify defects, it is

able to identify all defects identified in our work, as long as we have prior knowledge of

the defect and that the developer correctly includes the assertion of the P4 code to identify

the same defect.

5.4.2 Comparison with p4v

Qualitatively comparing P4-DATA-FLOW against p4v (LIU et al., 2018), the first

case study reported refers to general safety property in switch.p4, which should never

access a field of an invalid header. To validate this property, assertions were inserted

before each writing and reading of a header field that checks whether the corresponding

header instance is valid at that program point. They identified ten defects in switch.p4.

Two were parser defects, which parsed packets not supported by the rest of the pipeline.

Our solution is able to identify these defects as it also reads the variable when the packet is

parsed without having previously written through the packet extraction, violating the data

flow rule where every variable must first be written before being read. The other defects

identified by p4v in this case study related to order-of-operations error, in which fields

were modified in a header before the header was added. P4-DATA-FLOW can also identify

this defect by the same criterion of reading without writing before. Still in the same case

study, two defects were identified in tables that incorrectly allowed the nop action to be

taken, one defect was in the actions for terminating L3 MPLS tunnels, which erroneously

read the inner_ethernet header. Three defects correspond to multi-table constraints that

the designers of switch.p4 believe hold, but do not see how to enforce using the control

plane. We were unable to identify these defects because there is no violation of the data

flow rules and, therefore, it is not within the scope of our solution.

In the second case study carried out by p4v (LIU et al., 2018), an architectural

property for NetCache (JIN et al., 2017) was verified, a program that implements an in-

network key value store on a P4-programmable target. They used p4v to automatically

insert assertions into NetCache to check that the information in each header is correctly

preserved when processed using the deparser and the parser. The defect identified in
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this program is related to the P4 implementation of the put operation, where the code

correctly writes the value in the state registers and invalidates the optional header, but

fails to update the operational code. With this, the output analyzer tries to analyze the

optional value header again and the transition to an error state can occur and the packet

can be discarded. Our tool cannot identify this defect because the variables are being

written and read in the correct sequence according to the data flow, but the value being

stored is incorrect. This validation is not within the scope of our solution.

P4v (LIU et al., 2018) also carried out a third case study to reproduce the same

defect discovered by the developers of P4-ASSERT (NEVES et al., 2018), in NetPax-

oss (DANG et al., 2016) program, in which the action that compares the round number

from the arriving packet with the round number stored at the switch sets the drop flag of

the arriving packet by default, under the assumption that the packet should be dropped.

In this case, an incorrect packet drop definition occurs, that is, a variable is written with

the wrong information. Our solution P4-DATA-FLOW would not be able to identify this

defect as there is no violation of data flow rules, such as reading a variable without it

having ever been read or two consecutive writes of a variable.

The second step in the qualitative analysis of the defects identified by p4v (LIU

et al., 2018) was to verify whether p4v would also be able to identify the same defects

identified by our P4-DATA-FLOW tool. In this sense, p4v would be able to identify the

same defects identified in our work as long as the necessary assertions were inserted

to exercise these defects. She would not be able to identify the defects without prior

knowledge of their existence.

5.4.3 Comparison with Vera

We also performed a qualitative comparison if P4-DATA-FLOW would be able to

identify the same defects identified by Vera (STOENESCU et al., 2018). Seven defects

identified by the Vera tool have been reported. The first one is related to implicit drops,

which happens when a packet reaches the buffer mechanism without having a defined

egress_spec. They are able to identify this defect because they have included a validation

if egress_spec is different from zero when it arrives at the buffer.in port. The second

defect identified by Vera refers to the rules of the table that match dropped packets. They

are able to identify this defect as they have entered an assertion to mark as error 511 when

this situation occurs. P4-DATA-FLOW cannot identify either of these two defects because
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we do not validate the value that is stored in the variables, but if the flow of writing and

reading of the variables is correct.

The third defect that Vera identified deals with invalid memory accesses. This

defect occurs when a header field that has not been declared is accessed. Vera is able to

identify this defect in Symnet’s (STOENESCU et al., 2016) memory safe mode, where

when accessing an unallocated field Symnet fails in the current path. P4-DATA-FLOW is

also able to identify this same defect, as there is a violation of the data flow in this header

field, since there is a reading without writing before.

The fourth defect reported by Vera identifies header errors, that is, malformed

headers. They are able to identify these defects during the analysis using the existing

SEFL (STOENESCU et al., 2016) instruction. The fifth defect refers to scoping and

unallowed writes, where some metadata values are read-only in P4, but the P4 compiler

allows the program to write them or values that can only be read from a table according

to specifications, but the compiler allows for these readings. Vera identifies this type of

defect during the SEFL translation. It is not in the scope of our P4-DATA-FLOW tool to

identify these two types of defects, as we do not validate the values stored in the variables

to identify whether a header is well formed or to validate if any values are parameterized

to be read-only.

The sixth type of defect identified by Vera is related to out-of-bounds array ac-

cesses. They are able to identify these defects by adding, before each access to the matrix,

an out-of-bounds check for the index. We were able to identify these defects also using

the methodology we are proposing in this work, since in these situations there is a read

in fields that have not been written before, thus violating a data flow rule. The seventh

and final defect reported by Vera deals with field overflows and underflows which are the

only possible arithmetic exceptions in P4 (because the division is not supported) and Vera

captures them by adding a check before each addition / subtraction operation. Our tool is

unable to identify this type of defect because this is another case where the value stored

in the variable is being verified and this is not in our scope of defects.

The other way of qualitative comparison of defects was also carried out, where the

Vera tool’s ability to identify the same defects identified by our P4-DATA-FLOW solution

was verified. As previously mentioned, the Vera tool uses the snapshot mechanism to

perform the verification of P4 programs, that is, this tool uses the parser of the P4 program

and a snapshot of all its table rules to generate all parsable packet layouts (e.g. header

combinations ), and makes all header fields symbolic (i.e. they can take any value). Vera
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can do exhaustive tests for any rule snapshot in the table, but one snapshot does not

cover all the possible rules that can be inserted. Vera is able to identify the same defects

identified by P4-DATA-FLOW, as long as the rules that make up the snapshot exercise the

path of the defect to be identified. If the selected snapshot does not have the correct rules,

Vera is unable to identify the defects identified by our tool.

5.5 Discussion on Limitations and Applicability

Our solution has shown to scale well with the number of execution paths within

the switch program, as evidenced in the experiments considered. However, and simi-

larly to Vera (STOENESCU et al., 2018), higher verification times could be observed for

“branchier” codes, and therefore optimization strategies are required for such cases. The

validation of the switch.p4 and DC.p4 programs with our tool did not run until the end

because they are code with many branches. As far as we were able to explore the paths,

no bugs were identified. Vera (STOENESCU et al., 2018) takes between 5s-15s to track

the execution of a purely symbolic packet while our solution took 1s to verify an entire

P4 program. Note also that our solution does not uncover any possible types of switch

bugs, being therefore a complement to existing tooling that does not require programmer

intervention, like Vera (STOENESCU et al., 2018) and p4v (LIU et al., 2018).

We performed experiments using P4 programs available from well-know reposi-

tories and publications in prestigious venues in the field. Although more straightforward

compared to real switch code, they still represent an essential benchmark to analyze the

effectiveness of P4-DATA-FLOW compared to the state-of-the-art. Also, the size and

complexity of these programs provide a more controllable testing environment, which

makes it easier to rule out false-positives. We are working on a broader validation of

P4-DATA-FLOW using more sophisticated programs to validate scalability.

Another limitation of our prototype is that the impact of some P4 primitives like

resubmit and recirculate are not yet analyzed, and further analysis of the codes evaluated

is still required.
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6 CONCLUSION

The possibility of defining switch behavior brought by programmable forwarding

planes demands novel approaches to switch development, verification and validation. In

this dissertation, we reviewed the state-of-the-art on verification of programmable data

planes, and discussed the potentialities of using data flow analysis as a resource to detect

issues in P4 switch implementations. To this end, we devised P4-DATA-FLOW, a python

program that analyzes path expressions in switch metadata variables and header fields

and detects potential bugs in the P4 switch code. While we focused on P4 (mostly due

to the availability toolkit and popular switch implementations), our approach could be

generalized to address switch programs written in other domain specific languages, like

POF (SONG, 2013).

It is important to emphasize that the testing techniques should be seen as comple-

mentary and the question that arises is how to use them so that the advantages of each

are better explored in a testing strategy that leads to a effective testing activity. Thus, our

approach does not replace, but complements existing work in the field, like Vera (STOE-

NESCU et al., 2018), p4v (LIU et al., 2018), and ASSERT-P4 (NEVES et al., 2018). The

approaches are complementary so that together they are likely to discover a higher pro-

portion of defects than would be found using one technique on its own. While they cannot

catch defects that fall in classes like omission, we envisage that a fully-fledged verifica-

tion tool must incorporate a data flow analysis based approach as well as contributions of

previous investigations.

In spite of the progress achieved, much work remains. One research direction

for future investigation is the optimization of the P4 code analysis using heuristics to

prune the search space. For example, not all execution paths need to be evaluated as they

might be unfeasible (i.e., would not be reached during normal switch operation). We also

envisage embedding our solution with symbolic execution to tackle the need for structural

testing for potential but unconfirmed bugs after analysis.
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APPENDIX A — RESUMO EXPANDIDO

Com o avanço das pesquisas em redes definidas por software, o conceito de plano

de dados programáveis teve um interesse aprofundado pelos pesquisadores (FEAM-

STER; REXFORD; ZEGURA, 2014; CORDEIRO; MARQUES; GASPARY, 2017). Lin-

guagens específicas de domínio como POF e P4 agora permitem que operadores de rede

possam redefinir como os dispositivos de encaminhamento de dados analisam e proces-

sam pacotes.

Com isso, os operadores de rede agora podem definir seus próprios códigos para

implementar alguma especificação de protocolo fazendo com que seja necessária a real-

ização de etapas de verificação e validação (V&V) para cada código diferente implemen-

tado pelos operadores. Existe um empenho da comunidade de pesquisadores de rede em

investigar soluções para solucionar defeitos de programas para o plano de dados antes

que causem algum dano. Existem trabalhos que já exploraram diferentes técnicas de teste

como verificação estática (LOPES et al., 2016), asserções (FREIRE et al., 2018; NEVES

et al., 2018; LIU et al., 2018), execução simbólica (STOENESCU et al., 2018; FREIRE et

al., 2018; NEVES et al., 2018; LIU et al., 2018), testes funcionais (NöTZLI et al., 2018;

ZHOU et al., 2019) e aprendizagem de máquina (SHUKLA et al., 2019). Estas técnicas

de teste conseguem identificar algumas classes de defeitos com a intervenção adicional do

programador (que também pode inserir novos defeitos) para verificação, mas deixam de-

scobertas outras classes de defeitos que precisam ser explorados utilizando outras técnicas

de teste complementares para consolidar uma estratégia V&V mais ampla para programas

de plano de dados.

A.1 Contribuições da Dissertação

Nesta dissertação revisamos o estado da arte em verificação e validação de pro-

gramas para o plano de dados e confirmamos ainda mais o argumento de que as técnicas

exploradas pelos trabalhos existentes não cobrem todas as classes de defeitos de soft-

ware. A partir da revisão da literatura, também identificamos oportunidades no espaço

da solução que não foram exploradas por investigações anteriores. Em particular, argu-

mentamos que a análise do fluxo de dados é um elemento promissor para o design de

ferramentas V&V que não dependem de um esforço extra de programação para encontrar

defeitos de switch.
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Desta forma, neste trabalho exploramos a técnica de teste de fluxo de dados com

o objetivo de identificar diferentes classes de defeitos sem a necessidade de intervenção

humana. Na nossa proposta mapeamose os possíveis caminhos de execução de um pro-

grama de switch P4 e analisa a ordem das operações de leitura / escrita executadas nos

campos de cabeçalho e variáveis locais.

A.2 Principais Resultados Alcançados

Para avaliar a viabilidade técnica da nossa abordagem, desenvolvemos a ferra-

menta P4-Data-Flow e a avaliamos usando os populares códigos de switch P4 disponíveis

publicamente. A partir dos nossos experimentos, confirmamos as potencialidades e limi-

tações do uso da técnica de teste de fluxo de dados como um recurso para detectar defeitos

nas implementações de switches sem exigir nenhuma entrada / esforço / conhecimento do

desenvolvedor do switch, quando comparado às soluções existentes. Identificamos pos-

síveis situações de erro, por exemplo, campos de cabeçalho lidos sem uma operação de

gravação anterior.

Por fim, realizamos uma comparação qualitativa com as abordagens existentes,

visando demonstrar as classes de defeitos identificadas por cada trabalho, as limitações

de cada técnica e alguns direcionamentos para trabalhos futuros.
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