

Cálculo Numérico

primeira parte

Prof. Dagoberto A. R. Justo Autor

FICHA TÉCNICA

CÁLCULO NUMÉRICO: primeira parte

AUTOR

DAGOBERTO ADRIANO RIZZOTTO JUSTO

ROTEIRO, RESP.TÉCNICA

DAGOBERTO ADRIANO RIZZOTTO JUSTO

EDIÇÃO DE VÍDEO

DAGOBERTO ADRIANO RIZZOTTO JUSTO

APRESENTAÇÃO

Nesse recurso educacional estão contidos 11 vídeos sobre Cálculo numérico, sobre sistemas de numeração e métodos para resolução de equações de uma variável. O objetivo é apresentar o conteúdo inicial de uma disciplina de Cálculo numérico utilizando o software Scilab.

Inicialmente são apresentados sistemas de numeração binário e decimal, seguidos pela representação de números inteiros e em ponto flutuante nos computadores. Depois são apresentados os tipos de erros e suas consequências ao utilizar aproximações. Por fim, são apresentados os métodos da bissecção, ponto fixo e método de Newton para encontrar raízes de equações de uma variável.

O tempo total dos vídeos é de aproximadamente 118 minutos, apesar do conteúdo cobrir parcialmente o conteúdo de 24 horas (4 semanas) de uma disciplina de Cálculo numérico.

1.1 REPRESENTAÇÃO DE NÚMEROS:

Neste vídeo apresentamos o sistema de numeração decimal e definimos um sistema de numeração posicional. Apresentamos exemplos com o sistema decimal, sistema binário, sistema quaternário e o sistema hexadecimal, fazendo a mudança da base apresentada para base 10.

1.2 CONVERSÃO DE BASE DECIMAL:

Neste vídeo apresentamos um exemplo de como transformar um número em base decimal para a base binária. Depois seguimos com um exemplo de como transformar um número para base hexadecimal.

1.3 NÚMEROS INTEIROS:

Apresentamos como representar números inteiros no computador. Apresentamos a representação de números positivos, números com sinal e representação em complemento de dois. Nos exemplos são mostrados o maior e menor inteiro representado naquela notação.

1.4 PONTO FLUTUANTE:

Apresentamos a representação em ponto flutuante. Iniciamos com a normalização de números, seguindo com o sistema de ponto flutuante seguindo o padrão IEEE754. É apresentado com um exemplo a mantissa e o expoente, dando especial atenção para a representação com expoente deslocado (utilizando o BIAS). São definidos a precisão, o epsilon de máquina e um exemplo do maior e menor número representado.

2.1 TIPOS DE ERROS:

Apresentamos os diferentes tipos de erros, como o erro relativo e o erro absoluto. Também definimos o erro de truncamento e o erro de arredondamento. É definido o DIGSE, o número de dígitos significativos corretos e são apresentados vários exemplos.

2.2 ARREDONDAMENTO:

É relembrada a definição do epsilon de máquina e calculado através do programa Scilab. São apresentados dois arredondamentos: arredondamento por corte e por proximidade. São feitos exemplos de arredondamento com o Scilab.

2.3 CANCELAMENTO CATASTRÓFICO:

São apresentados os erros cometidos nas operações elementares: adição, subtração, multiplicação e divisão. O cancelamento catastrófico é definido. Exemplos são feitos através do software Scilab.

3.1 NÚMERO DE CONDICIONAMENTO:

O número de condicionamento de um problema é definido. Também é mostrada a relação entre o erro na entrada e na saída de um problema. São mostrados exemplos numéricos através do software Scilab.

3.2 MÉTODO DA BISSECÇÃO:

O método da bisseção é apresentado para estimar as raízes de uma função. São mostrados exemplos através de gráficos no Scilab e a criação de um pequeno código para obtenção da raiz de uma função.

4.1 MÉTODO DO PONTO FIXO:

A iteração de ponto fixo é apresentada através de um exemplo no Scilab. Depois disso o método do ponto fixo é apresentado, dois exemplos são realizados e a condição para convergência é apresentada no final.

4.2 MÉTODO DE NEWTON:

O método de Newton é apresentado através de sua construção geométrica. Depois disso são apresentados um código em Scilab e um exemplo numérico da solução. São apresentados a solução do problema através da utilização de códigos e gráficos.