
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

RÓGER MATEUS SEHNEM

NONLINEAR CONTROLLER DESIGN
USING UNIVERSAL APPROXIMATORS
THROUGH THE VIRTUAL REFERENCE

METHOD

Porto Alegre
2023

RÓGER MATEUS SEHNEM

NONLINEAR CONTROLLER DESIGN
USING UNIVERSAL APPROXIMATORS
THROUGH THE VIRTUAL REFERENCE

METHOD

Thesis presented to Programa de Pós-Graduação
em Engenharia Elétrica of Universidade Federal do
Rio Grande do Sul in partial fulfillment of the re-
quirements for the degree of Master in Electrical
Engineering.
Area: Control and Automation

ADVISOR: Prof. Dr. Alexandre Sanfelici
Bazanella

Porto Alegre
2023

RÓGER MATEUS SEHNEM

NONLINEAR CONTROLLER DESIGN
USING UNIVERSAL APPROXIMATORS
THROUGH THE VIRTUAL REFERENCE

METHOD

This thesis was considered adequate for obtaining
the degree of Master in Electrical Engineering and
approved in its final form by the Advisor and the
Examination Committee.

Advisor:
Prof. Dr. Alexandre Sanfelici Bazanella, UFRGS
Doctor by the Federal University of Santa Catarina, UFSC -
Florianópolis, Brazil

Examination Committee:

Prof. Dr. Fabrício Gonzalez Nogueira, UFCE
Doctor by the Federal University of Pará – Belém, Brazil

Prof. Dr. João Manoel Gomes da Silva Jr., UFRGS
Doctor by the Université Paul Sabatier – Tolouse, France

Prof. Dr. Diego Eckhard, UFRGS
Doctor by the Federal University of Rio Grande do Sul – Porto Alegre, Brazil

Coordinator of PPGEE:
Prof. Dr. Jeferson Vieira Flores

Porto Alegre, November 2023.

ACKNOWLEDGMENTS

I am grateful for the quality public education that allowed me to get here.
To my parents, Claudio and Roselita, my brother João, my cousins Josué, Josiane and

Jonathan, and all of my friends, especially Linda, Ana, Paula, Kenedy and Jamie, for
inspiring and supporting me to follow my dreams.

To my advisor, Professor Alexandre Bazanella, for the guidance and freedom that
allowed me to pursue my interests.

To my partner, Livia Alves, who supported and inspired me throughout this work.
This work was realized with the support of Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq).

ABSTRACT

This work deals with the usage of universal approximators, mainly Deep Neural Net-
works (DNNs), as parametrizations for the controller of nonlinear dynamical systems in
the context of the Virtual Reference Feedback Tuning. One of the challenges in the uti-
lization of the VRFT method is the definition of the controller parametrization. Since
nonlinear systems present a very rich behavior, defining a parametrization that allows to
approximate the ideal controller can be a very complex task. With the intention to ease
this definition, the usage of DNNs was proposed, which are known for being universal
approximators. However the literature uses a filter that is quite limiting for the practical
application of the method with DNNs which, in addition to being computationally costly,
requires a plant model to be identified to apply the method, going against the data-driven
principles. For this reason, in this work, the usage of DNNs with the linear VRFT filter
is evaluated. Since regularization techniques are a key component in the usage of DNNs,
they are evaluated and utilized not only with DNNs, but also with simpler parametriza-
tions, linear in the parameters, allowing an easier understanding of its effects. The study
results are illustrated with the application of the proposed method, using simulations, in
two different nonlinear systems, and suggest that the proposed approach is viable for ob-
taining data-based controllers. A new analysis is also proposed for the database, using
the concept of virtual reference is possible to create what would be the ideal database for
the controller identification. This ideal database is compared, using heatmaps, with the
database obtained experimentally, using the VRFT method. This analysis is used, in all
case studies, to explain the controller’s performance.

Keywords: Nonlinear control, virtual reference feedback tunning, deep neural net-
work, universal approximators.

RESUMO

Este trabalho trata da utilização de aproximadores universais, principalmente Redes
Neurais Profundas (RNP), como parametrização para o controlador de sistemas dinâmi-
cos não lineares no contexto do método Virtual Reference Feedback Tuning (VFRT). Um
dos desafios na utilização do método VRFT é a definição da parametrização do contro-
lador, como sistemas não lineares apresentam comportamento bastante rico, definir uma
parametrização que permite aproximar o controlador ideal pode ser uma tarefa bastante
complexa. Com a intenção de facilitar esta definição, foi proposta utilização de RNPs
conhecidas por serem aproximadores universais. Contudo a literatura utiliza um filtro
bastante limitante para a aplicação prática com RNPs que, além de computacionalmente
custoso, necessita que um modelo da planta seja identificado para a aplicação do método,
indo contra os princípios do controle baseado em dados. Por esta razão, neste trabalho,
é avaliada a utilização de RNPs com o filtro do VRFT linear. Como técnicas de regu-
larização são uma componente chave na utilização de RNPs, as mesmas são avaliadas e
utilizadas não somente com RNPs, mas também com parametrizações lineares nos parâ-
metros, permitindo um entendimento facilitado dos seus efeitos. Os resultados do estudo
são ilustrados com a aplicação do método proposto, por meio de simulações, em dois
sistemas não lineares diferentes, e sugerem que a abordagem proposta é viável para a
obtenção de controladores baseado em dados. É proposta, também, uma nova análise da
base de dados, utilizando o conceito da referência virtual é possível montar o que seria
a base de dados ideal para a identificação do controlador. Essa base de dados ideal é
comparada, por mapas de calor, com a base obtida experimentalmente, através do método
VRFT. Esta análise é utilizada para explicar, em todos os estudos de caso, o desempenho
dos controladores.

Palavras-chave: Controle não linear, virtual reference feedback tunning, rede neural
profunda, aproximadores universais.

LIST OF FIGURES

Figure 1 – Control architecture . 20
Figure 2 – Control architecture showing CZ . 20
Figure 3 – Control architecture for the simplified linear case. 25
Figure 4 – Control Architecture . 26
Figure 5 – Errors in variables in the VRFT. 30
Figure 6 – The perceptron. 37
Figure 7 – The multi-output perceptron. 39
Figure 8 – The two layer perceptron. 40
Figure 9 – The multilayer perceptron. 41
Figure 10 – The multilayer perceptron for the XOR problem. 42
Figure 11 – Recurrent Neural Network. 52
Figure 12 – Deep Recurrent Neural Network in Vector Format 53
Figure 13 – Deep Recurrent Neural Network in Vector Format 54
Figure 14 – Deep Recurrent Neural Network in Vector Format 55
Figure 15 – Step response of (115). 66
Figure 16 – Step response of (116). 67
Figure 17 – Part of the sequence of steps used to excite the system. 68
Figure 18 – Part of the output of the system. 68
Figure 19 – Comparison of filtered and non filtered input. 69
Figure 20 – Comparison of Filtered Error and Non filtered. 69
Figure 21 – Integrated Error (filtered). 70
Figure 22 – Comparison of closed loop system with the Reference Model to a step

response. 73
Figure 23 – Closed loop control action of Figure 22. 73
Figure 24 – Comparison of closed loop system with the Reference Model to a

more challenging reference. 74
Figure 25 – Reference and Reference Model output for the creation of the ideal

dataset. 75
Figure 26 – Ideal and experimental dataset distribution. 75
Figure 27 – Difference heatmap between ideal and experimental datasets. 76
Figure 28 – Ideal and experimental dataset velocity distribution. 77
Figure 29 – Step response of (126). 78
Figure 30 – Step response of (127). 79
Figure 31 – Part of the input used to excite the system. 80
Figure 32 – Part of the system’s output. 80
Figure 33 – Comparison of closed loop system with the Reference Model to a step

response. 83

Figure 34 – Closed loop control action of Figure 33. 83
Figure 35 – Comparison of closed loop system with the reference model for a

more challenging reference. 84
Figure 36 – Energy of each control signal. 85
Figure 37 – Model Reference Cost histogram with LASSO. 86
Figure 38 – Model Reference Cost histogram without LASSO. 86
Figure 39 – Part of the sequence of steps used to excite the system. 87
Figure 40 – Part of the output of the system. 88
Figure 41 – Comparison of filtered and non filtered input. 88
Figure 42 – Comparison of Filtered and Non filtered Error. 89
Figure 43 – Integrated and partially integrated error. 89
Figure 44 – Integrated and partially integrated error distribution over eL 90
Figure 45 – Comparison of closed loop system with the Reference Model to a step

response. 93
Figure 46 – Closed loop control action of Figure 45. 93
Figure 47 – Comparison of closed loop system with the Reference Model to a

more challenging reference. 94
Figure 48 – Control of the closed loop system of Figure 47. 95
Figure 49 – Reference and Reference Model output for the creation of the ideal

dataset. 95
Figure 50 – Ideal and Experimental datasets distribution. 96
Figure 51 – Difference heatmap between ideal and experimental datasets. 97
Figure 52 – Ideal and Experimental datasets velocity distribution. 97
Figure 53 – Comparison of closed loop system with the Reference Model to the

smoothed reference. 98
Figure 54 – Step response of (141). 99
Figure 55 – Comparison of filtered and non filtered input. 100
Figure 56 – Comparison of Filtered Error and Non filtered. 100
Figure 57 – Comparison of closed loop system with the Reference Model to a step

response. 101
Figure 58 – Closed loop control action of Figure 57. 101
Figure 59 – Comparison of closed loop system with the Reference Model to a

more challenging reference. 102
Figure 60 – Ideal and Experimental datasets distribution. 103
Figure 61 – Comparison of closed loop system with the Reference Model to the

smoothed reference. 103
Figure 62 – Comparison of closed loop system with the Reference Model to a

more challenging reference. 104
Figure 63 – Comparison of closed loop system with the Reference Model to a

more challenging reference. 105
Figure 64 – Comparison of closed loop system with the Reference Model. 105
Figure 65 – Comparison of closed loop system with the Reference Model to a

more challenging reference. 106

LIST OF TABLES

Table 1 – DC-Motor parameters . 78
Table 2 – Nonlinear Functions of the dictionary 82

LIST OF ABBREVIATIONS

ADAM Adaptative Moments Estimation

ANN Artificial Neural Network

BPTT Backpropagation Through Time

BP Backpropagation

CBT Correlation Based Tuning

DBN Deep Belief Network

DC Direct Current

DD Data-Driven

DNN Deep Neural Network

FDT Frequency Domain Tuning

GRU Gated Recurrent Unit

IFT Iterative Feedback Tuning

IO Input-Output

LASSO Least Absolute Shrinkage and Selection Operator

LQR Linear Quadratic Regulator

LSTM Long Short Term Memory

MBC Model Based Control

MIMO Multi-Input Multi-Output

MPL Multi Layer Perceptron

MRAC Model Reference Adaptive Control

MRC Model Reference Control

NADAM Nesterov Adaptative Moments Estimation

OCI Optimal Controller Identification

PID Proportional Integral Derivative

PRBS Pseudo Random Binary Sequence

RHS Right Hand Side

RL Reinforcement Learning

RNN Recurrent Neural Networks

RNP Rede Neural Profunda

ReLU Rectified Linear Unit

S2S Sequence-to-Sequence

S2V Sequence-to-Vector

SGD Stochastic Gradient Descent

SISO Single-Input Single-Output

SLP Single Layer Perceptron

TTSSDM Taylor Series Sampled Data Model

VRFT Virtual Reference Feedback Tuning

XOR Exclusive Or

ZOH Zero Order Hold

CONTENTS

1 INTRODUCTION . 13
1.1 Motivation . 13
1.2 Previous work on DD control design methods 14
1.3 Contribution and organization . 16

2 VIRTUAL REFERENCE FEEDBACK TUNING 18
2.1 System Definition . 18
2.2 Control Architecture . 19
2.3 VRFT Algorithm . 21
2.3.1 JV (θθθ) as a means to J(θθθ) . 22
2.4 Mismatched Controller . 24
2.4.1 Linear VRFT . 24
2.4.2 Nonlinear VRFT . 26
2.4.3 Filter application . 28
2.5 Non Unique Minimizer of JV (θθθ) . 29
2.6 Effects of Measurement Noise . 29

3 CONTROLLER PARAMETRIZATIONS 32
3.1 Polynomial . 34
3.2 Deep Neural Networks . 36
3.2.1 The Perceptron . 37
3.2.2 The Multilayer Perceptron . 39
3.2.3 Activation Functions . 43
3.2.4 Cost Functions . 45
3.2.5 Stochastic Gradient Descent . 47
3.2.6 Backpropagation . 50
3.2.7 Recurrent Neural Networks . 51
3.3 Regularization . 60
3.3.1 Parameter Regularization . 61
3.3.2 Gaussian Noise Contamination . 63
3.3.3 Regularization in VRFT context . 64

4 CASE STUDIES . 65
4.1 Simple Pendulum . 65
4.1.1 Case 1 . 66
4.2 DC Motor . 78
4.2.1 Case 1: polynomial controller . 79
4.2.2 Case 2: DNN controller . 87

4.2.3 Case 3: DNN controller with modified Reference Model 98
4.2.4 Case 4: super-sampling . 104

5 CONCLUSION . 107

REFERENCES . 109

13

1 INTRODUCTION

1.1 Motivation

One of the most distinct characteristic of life is the ability to adapt itself to the most di-
verse environments. The examples are numerous, to cite two, birds can adapt their wings
to keep them on their desired track and warm-blooded animals often use many mecha-
nisms, such as sweat and altering blood flow patterns, to keep their internal temperature
at an optimal level. This ability is even more impressive when we consider the complexity
of those organisms. This self-regulating property gives them the ability to, at least to some
extent, be independent of any external input, for instance, we do not spend much thinking
into when or how our bodies should be sweating, this process happens automatically.

This amazing self-regulating characteristic is very desirable in virtually any human-
made system and is what automatic control aims to do. In a more pragmatic view, what
automatic control does is to create a controller that acts on a system, this controller is
simply a function that, given some measured outputs of the system, calculates adequate
inputs to it, such that the system’s outputs behave in a desirable manner. Automatic
control is used in many areas of different complexities, going from the temperature control
of a refrigerator to the autopilot of a spacecraft with very successful applications.

Most control design methods rely on the precise knowledge of the system: a model,
which comes in the form of a differential or difference equation, that describes the sys-
tem’s variables evolution in time. With a model of the system, it is possible to use many
control design methods to define the controller that gives the system the intended self-
regulatory behavior. The design methods that rely on the system’s model to formulate the
controller are deemed Model Based Control (MBC) techniques.

To use any MBC technique a system model is required, this model can be obtained by
knowing the physics and fundamental principles that are applicable, by system identifica-
tion or by a combination of those two. System identification builds models from observed
input-output (IO) data of the system, and it is an active research area that goes further than
discovering models solely for the purpose of control. More about system identification
can be found on (LJUNG, 1999; SÖDERSTRÖM; STOICA, 1989).

14

When identification is used for control some considerations needs to be made with re-
spect to the model structure and order. Also, it is important to see if the controller defined
using this model performs well on the real system. Those aspects make a compelling
argument for using data-driven (DD) control design methods, where the controller is di-
rectly found from the IO data. With it there is no need to identify a model to design a
controller, which can potentially save a lot of engineering time in designing controllers
for systems with an unknown model.

One potential downside of using DD control design methods is that in realistic ap-
plications, since the system dynamics is unknown and corrupted by noise, there are not,
usually, stability guarantees. This means that the found controllers need, at least in the
beginning, to be implemented in closed loop with caution.

Another potential downside is on applying DD control design methods on unstable
systems. A priori, all DD methods can be applied on unstable systems. The problem,
however, is on how to excite the system, since the system is unstable, unless it is already
stabilized by some controller, defining an input trajectory that keeps the system inside the
operational bounds can be quite difficult.

There are many data-driven control methods in the literature, such as the Ziegler-
Nichols tuning method, Iterative Feedback Tuning (IFT), Correlation Based Tuning (CBT),
Reinforcement Learning (RL), Frequency Domain Tuning (FDT), Optimal Controller
Identification (OCI) and the Virtual Reference Feedback Tuning (VRFT). It is relevant
to have a sense on how those DD methods work, what are their particularities, pros and
cons. For this reason, in the next section, some previous works on DD are presented.

1.2 Previous work on DD control design methods

The Ziegler-Nichols method (ZIEGLER; NICHOLS, 1942) is a classic method for
tuning controllers. It was originally developed to tune controllers of the Proportional In-
tegral Derivative (PID) class, requiring a simple experiment on the system to reveal its
ultimate gain and oscillation period. From those, the controller’s parameters are calcu-
lated from a table. The method has limited effectiveness since the table itself is a heuristic
that works for most systems analyzed by Ziegler and Nichols, and it might not work well
for systems with significantly different characteristics than those analyzed.

In the IFT method (HJALMARSSON; GUNNARSSON; GEVERS, 1994) the control
objective is to make the output of the unknown system close to a desired output, which
can be given by a reference model. The unknown system is controlled by a controller of
fixed structure and variable parameters. Those are, in turn, selected by minimizing a cost
function that penalizes the error between the output of the closed loop and the desired
system.

The IFT method is closely related to the Model Reference Adaptive Control (MRAC)

15

(ÅSTRÖM; WITTENMARK, 2013) when the method is used with the reference model,
instead of being used with only the desired output, and when the cost function is quadratic
(HJALMARSSON et al., 1998). The need in the IFT method to use a sequence of exper-
iments to calculate the controller’s parameters is why it is named an iterative method.

The CBT method adjusts the parameters of an initial stabilizing controller, often ini-
tially designed for a reduced-order model of the system. It does that by means of mini-
mizing a cost function that measures the correlation of the closed-loop output error, i.e.,
the difference of the desired and the achieved outputs of the system, with the reference
signal (KARIMI; MIŠKOVIĆ; BONVIN, 2004).

In the Reinforcement Learning (RL) approach the objective is to solve a discrete time
optimal control problem where the system can be unknown. As in the usual optimal
control problem setup, a cost function is defined and the control objective is to extremize
this cost function (BUŞONIU et al., 2018). In the RL approach the cost function is often
defined as the summation of the reward values. The RL methodology can be applied when
the system dynamics is unknown, one of the most famous such methodology is known as
Q-learning, where the Q-value, a representation of the rewards, is given by a recurrence
equation that depends only on the observed states and rewards (WATKINS; DAYAN,
1992). To deal with continuous systems the Q-functions and the control policy can be
approximated by a parametrized version. When those parametrizations are given by Deep
Neural Networks, the method is named Deep Reiforcement Learning. This approach is,
in part, the technique used by the DeepMind team in the challenging problem of creating
a controller capable of playing more than 40 Atari 2600 games using only the pixels and
game scores as inputs (MNIH et al., 2015).

The Frequency Domain Tuning (FDT) method can be seen as a frequency domain vari-
ant of the IFT algorithm (KAMMER; BITMEAD; BARTLETT, 2000). The cost function
to be minimized penalizes the output size and the control size and the controller has a
fixed structure with some unknown vector of parameters. As in the IFT method, an esti-
mate of the derivative of the cost function is made using IO data and an extra experiment
with an specific reference. In the FDT, however, the cost function derivatives with respect
to the parameters are calculated via a spectral analysis of the closed-loop experimental
data.

The Optimal Controller Identification (OCI) method was presented in (CAMPESTRINI
et al., 2017) for linear SISO systems. OCI is a model reference control design method,
which requires the definition of a parametrization of the controller. To find the parameters
that make the closed loop system behave as the reference model, the unknown dynamics
is parametrized as a function of the controller parameters and the model is then identified
using standard prediction error identification, since the model is parametrized only by the
controller parameters, the identification returns directly the optimal parameters.

The VRFT method was first introduced in (CAMPI; LECCHINI; SAVARESI, 2002)

16

for linear systems and further extended to nonlinear systems in (CAMPI; SAVARESI,
2006). Similar to the IFT method, the objective is to make the output of the unknown
system close to the reference output by tuning the parameters of a predefined control
structure, however, the VRFT method requires that this reference output is given by a
known reference model.

The basic idea of the method is to interpret the IO data as if it was taken from the ref-
erence model. This allows, via the inverse dynamics of the reference model, to calculate
the virtual reference, i.e., the reference fed to the reference model such that the output is
the same as the one from the collected output. This approach transforms the problem of
identifying the system dynamics to tune a controller into a problem of directly identifying
the controller that achieves a desired closed loop performance.

1.3 Contribution and organization

In order to use the VRFT method the user has first, as will be seen, to define a con-
troller parametrization. This is not a trivial thing to do since the ideal controller, i.e., the
one that when in closed-loop with the system makes it behave as the reference model,
needs to be at least almost achievable using the defined parametrization. The problem is
that the ideal controller class is not known, since to know it precisely one needs to also
know the system’s class, an information that is unavailable by hypothesis. This problem
is even bigger when dealing with nonlinear systems, as will be the case in this work.

Since linearly parametrized controllers have a closed form solution in the VRFT
method, that is usually the chosen parametrization form and was the one in which the
nonlinear extension of the method was presented (CAMPI; SAVARESI, 2006). The prob-
lem is that for some nonlinear system, this ideal linear parametrization might need too
many parameters1 and accompanying terms in the dictionary, which can be cumbersome
to define in a realistic application.

Deep Neural Networks (DNNs) are known for being universal approximators (CHARU,
2018; GÉRON, 2022; GOODFELLOW; BENGIO; COURVILLE, 2016; MONTÚFAR,
2014), and thus offer an interesting option of being used as the controller’s parametriza-
tion, which is also the approach used in Deep Reinforcement Learning. In this work, the
usage of DNNs and polynomial basis will be explored and compared in the context of the
nonlinear VRFT method.

The work is organized as follows, first, some concepts and theorems that pertain the
nonlinear VRFT method are present in Chapter 2, where the system is formally defined,
the control architecture is fixed and the VRFT algorithm is presented in an ideal scenario,
then the method properties are present in more challenging and realistic scenarios.

Chapter 3 defines the controller parametrizations of relevance to the work, together

1Possibly infinitely many.

17

with the analysis of their properties. There, polynomial basis are defined along with an
analysis of their use as controller parametrizations, then general DNNs are presented, fol-
lowed by the Recurrent Neural Networks (RNNs), which are a specialized type of DNNs
well suited for modeling dynamical systems such as controllers, training algorithms and
most of the relevant concepts that allow the usage of DNNs are also presented and dis-
cussed. One important concept that is present is Regularization, which is introduced for
general DNNs and discussed specifically in the context of the VRFT method.

The nonlinear VRFT method is then applied to two different dynamical systems in
chapter 4, where some different controller parametrizations are tested and compared in
order to get a more concrete sense of the method’s effectiveness and properties when used
with nonlinear parametrizations. The work ends with general conclusions in Chapter 5.

18

2 VIRTUAL REFERENCE FEEDBACK TUNING

The Virtual Reference Feedback Tuning (VRFT) is a method of the class of data-
driven control methods. The main feature of this class consists in tuning the parameters
of a class of controllers for a given system using only input-output (IO) data collected in
a experiment realized on it.

In this chapter the ideas and concepts that pertain the nonlinear VRFT method will
be developed to give a solid base that will latter be used to create a data-based nonlinear
controller. In the next section, the system that will be controlled is defined along with
some notation. The next section discusses the control architecture and what exactly will
be the controller that will be tuned by the VRFT method.

With these definitions in hand, the VRFT algorithm is presented and discussed on a
general nonlinear setup, its main concepts, namely the virtual reference and error, are
presented along with the theorems that validate the approach and the use of the method
in a more realistic setup, that includes noise and lack of representational power of the
controller parametrization.

2.1 System Definition

In the Data-Based Control approach the objective is to control a system without know-
ing its dynamics. It is important to define it, however, to make clear the general properties
and notation that will be used to develop the results that make the nonlinear VRFT. This
is also important to make explicit the assumptions made in the process.

The system that will be controlled and from which data will be collected is continuous,
nonlinear and single-input single-output (SISO), with states xxx(t), control u(t) and output
y(t). Since the control action is calculated at constant intervals and one usually have no
access to all states, the input-output behavior of the continuous system is approximated
by a discrete time SISO nonlinear system. This unknown nonlinear system of interest
have, similarly, an input u(t) and output y(t), and is defined as

y(t) = S[y(t)qqqns , u(t)qqqns] + ν(t), (1)

where the time t ∈ Z, the map S : Rns × Rns → R and the measurement noise ν(t) ∈ R

19

is a stationary process. The backward shift vector is defined as

qqqan =
î
q−a q−(a+1) q−(a+2) · · · q−n

óT
, (2)

where a ≤ n with a, n ∈ W and q is the forward shift operator, e.g. qy(t) = y(t+ 1) and
q−1y(t) = y(t − 1). To ease the notation, whenever a = 1, the backward shift vector is
simply qqqn.

It is a well known result that when the continuous system is linear, it can be repre-
sented exactly by a discrete time counterpart. However, when that is not the case, in
general, no exact representation exists and an approximate one hast to be used instead.

This approximate representation is sufficient for control purposes as long as the error
is small enough, a measure that depends on the specific system and control requirements.
An interesting and useful result that validates using such approximation is the Truncated
Taylor Series Sampled Data Model (TTSSDM) presented in (YUZ; GOODWIN, 2005).
As shown in (CARRASCO; GOODWIN; YUZ, 2012), using this model, the Global Vec-
tor Fixed Time Truncation Error, i.e., the error between each state in the continuous and
discrete time models after evolved for a fixed time, can be made arbitrarily small given
that the sampling frequency can be made arbitrarily big.

Another representation is given in (SCHOUKENS; RELAN; SCHOUKENS, 2017),
however this one has less strict requirements on the properties of the control signal. This
approximate representation also allows for arbitrarily small errors but with a smaller sam-
pling frequency than required using the TTSSDM.

The above discussion motivates the following assumption

Assumption 2.1.1. The continuous output is close to the discrete output in the sampled

times, i.e. y(ti)− y(ti) ≈ 0, ∀ti.
It should be noted, however, that no specific discrete model such as TTSSDM is en-

forced. The argument for the Assumption 2.1.1 is made in the sense that some discrete
time representation of continuous the system exists with bounded and sufficiently small
errors.

2.2 Control Architecture

The control action, when applied to S , is calculated in constant time intervals and
applied in the sample and hold fashion, i.e., using ZOH to transform the discrete signal
to a continuous one. Thus, unlike the system model, which is continuous by nature, the
control action can be thought directly as a discrete time system.

The control architecture is shown in the Figure 1, where C is the control map and Z is
the measure map, both are discrete time nonlinear systems.

The control u(t) is generated by

u(t;θθθ) = C[qqq0nc−1zzz
T (t), u(t)qqqnc ;θθθ], (3)

20

Figure 1 – Control architecture

SCZr(t) e(t) zzz(t) u(t) y(t)

ν(t)

Source: author

where zzz(t) ∈ Rmz is a vector of measurements of the system with mz measurements,
going all nc samples in the past, θθθ ∈ Rnθ is the parameter vector, and, for a given θθθ, the
map C : Rnc×mz × Rnc → R. The error is defined as

e(t) = r(t)− y(t), (4)

where r(t) is the reference signal.
Similarly to the control, the measurement vector zzz(t) is given by

zzz(t) = Z[r(t)qqq0nz−1, e(t)qqq
0
nz−1, y(t)qqq

0
nz−1], (5)

where the map Z : Rnz × Rnz × Rnz → Rmz .
Unlike C, the measurement map is not parameterized and, instead, is completely de-

fined by the user. This definition should be made in a way that make the solution of the
VRFT problem simpler in the control parametrization, e.g, if the control objective is to
have a zero steady state error, one interesting measurement to add to Z is the integrated
error signal zI(t) as in

zI(t) =
t∑

τ=0

e(τ), (6)

where it is assumed that nz depends on t in (5).
To see the role of the measurement map it is interesting to see a control architecture

similar to the one in Figure 1 but with Z and C as a single system, which is shown in
Figure 2.

Figure 2 – Control architecture showing CZ

SCZr(t) e(t) z(t) u(t) y(t)

ν(t)

CZ
Source: author

In Figure 2, the parameterized control system is now CZ , in this fashion the control is
given by

u(t;θθθ) = CZ [r(t)qqq0nz−1, e(t)qqq
0
nz−1, y(t)qqq

0
nz−1;θθθ], (7)

21

where, for a given θθθ, the map CZ : Rnz × Rnz × Rnz → R.
If the goal was, for instance, to find a set of parameters θθθ that makes CZ a zero steady

state error controller, θθθ and CZ would have to, internally, calculate the integrated error
signal. With the approach of Figure 1, it is possible to directly create the signals that are
known to be necessary to give the controller the desired closed loop performance. Since C
is found by minimizing a cost function, defining the measurement map in this fashion has
the result of decreasing the complexity of C1, thus decreasing the optimization problem
complexity.

2.3 VRFT Algorithm

If the unknown system of interest in Eq. (1) is operated in closed loop with the con-
troller in Eq. (7), its closed loop dynamics would be expressed as

y(t;θθθ) = S[y(t;θθθ)qqqns , CZ [r(t)qqq0nz−1, e(t)qqq
0
nz−1, y(t)qqq

0
nz−1;θθθ]qqqns] + ν(t), (8)

where the dependence on the controller parametrization is made explicit.
The objective of the VRFT method is to perform a model reference control without

having to resort on the knowledge of the system model S in Eq. (1). That is, it is desired
to control the system S such that it behaves as the reference system Sr, defined as

yr(t) = Sr[yr(t)qqqnsr
, r(t)qqqnsr

], (9)

where yr is the reference output.
Thus, in the Model Reference Control (MRC) paradigm, the control objective can be

expressed, using Eq. (8) and Eq. (9), as minimizing the following cost function

J(θθθ) =
1

N

N∑

t=1

E [yr(t)− y(t;θθθ)]2 , (10)

where N is the number of samples, both systems are operating with the same reference
r(t) and E denotes the expected value. Since the number of samples N is often big, (10)
can be seen as

J(θθθ) = lim
N→∞

1

N

N∑

t=1

E [yr(t)− y(t;θθθ)]2 = Ē [yr(t)− y(t;θθθ)]2 . (11)

The cost function in Eq. (10) has its global minimum when the system S is operated
in closed loop with the ideal controller Cr, i.e., the controller that makes yr(t) = y(t).

There are two problems with the cost function in Eq. (10), the first is that it depends,
via y(t;θθθ), on the system model. However, in the data-based control paradigm, we only
have access to the system via an experiment realized on it. More specifically, we have only

1In the integrator example, since CZ needs a integrator, if Z contains one, C does not need one.

22

its input-output data y(t), u(t), t = 1, · · · , N . The second is that it is non-convex even
for linear systems with linearly parametrized controllers (CAMPI; SAVARESI, 2006;
BAZANELLA; CAMPESTRINI; ECKHARD, 2011).

To deal with these problems, in the VRFT approach, we define the virtual reference
r̄(t), using Eq. (9), as

y(t) = Sr[y(t)qqqnsr
, r̄(t)qqqnsr

]. (12)

This mean that the virtual reference is the signal that would have to be feed to the reference
system Sr to make its output the same as the observed output in the actual experiment,
i.e., y(t) t = 1, · · · , N . The virtual reference is baptized as such because this signal was
never in place in the actual experiment.

Similarly, it is possible to define the virtual error, using Eq. (4), as

ē = r̄(t)− y(t). (13)

The central idea of the VRFT method is to perceive the input-output data as if was
taken from system S operating in closed loop with the ideal controller Cr. With this, it
is possible to transform the problem of minimizing J(θθθ) into the problem of minimiz-
ing the controller error JV (θθθ). To this end, as in the linear case (CAMPI; LECCHINI;
SAVARESI, 2002; BAZANELLA; CAMPESTRINI; ECKHARD, 2011), the nonlinear
VRFT method uses, instead of Eq. (10), a cost function that minimizes the controller
error

JV (θθθ) = Ē
[
u(t)− C[qqq0nc−1z̄zz

T (t), u(t)qqqnc ;θθθ]
]2

(14)

where z̄zz(t) is virtual version of the measurement vector, i.e., where every instance of the
reference signal and the error is replaced by the virtual reference r̄(t) and virtual error
ē(t).

The validity of minimizing the VRFT cost function of Eq. (14) as a means to minimize
the MRC cost function of Eq. (10) will be more deeply analyzed in sub-section 2.3.1. The
intuitive reason behind it is the following: assuming that, via the minimization of JV , the
ideal controller is found, i.e., C[qqq0nc−1z̄zz

T (t), u(t)qqqnc ;θθθ0] = Cr, where JV (θθθ0) = 0. If this
controller, together with Z , is put in closed loop with the system S and fed by r̄(t), the
controller’s output is u(t) exactly, which would make the system output the desired y(t).

The beauty of minimizing the Eq. (14) is twofold: first, it makes possible to design
a nonlinear controller for a nonlinear system using only input-output data collected from
a single experiment; second, if the controller is linearly parametrized, JV (θθθ) is convex,
whereas J(θθθ), for the same setup, it is not.

2.3.1 JV (θθθ) as a means to J(θθθ)

Although minimizing JV (θθθ) as a means to minimize J(θθθ) seems intuitively sound, in
this sub-section the assumptions and theorem that make this approach valid will be given

23

in order to better understand the method’s limitations and foundation.
Let’s first begin with the following assumptions:

Assumption 2.3.1 (Controller in class). The ideal controller is in the class of controllers

given by the parametrization C[qqq0nc−1z̄zz
T (t), u(t)qqqnc ;θθθ], i.e. ∃θθθ0 | C[qqq0nc−1z̄zz

T (t), u(t)qqqnc ;θθθ0] =

Cr.

Assumption 2.3.2. For any finite control signal u(t), the output of S exists and is unique.

Assumption 2.3.3 (Noiseless System). The system is noise free, i.e., ν(t) = 0.

Assumption 2.3.4. JV (θθθ) has a unique minimizer.

Using assumptions 2.3.1 to 2.3.4, the following theorem, similar to the one given in
(CAMPI; SAVARESI, 2006), states

Theorem 2.3.1. If θθθ0 leads to perfect tracking, i.e., J(θθθ0) = 0 in (10), then θθθ0 is also a

minimizer of JV (θθθ) in (14). Then, in view of assumption 2.3.4, arg min JV (θθθ) = arg min

J(θθθ) = θθθ0.

Proof. Since θθθ0 makes J(θθθ0) = 0, it follows that

yr(t) = y(t, θθθ0) ∀t, (15)

where the parametrized output is the system output when fed by the virtual reference, i.e.

y(t, θθθ0) = S[y(t, θθθ0)qqqny , CZ [r̄(t)qqq0nz−1, ē(t)qqq
0
nz−1, y(t, θθθ0)qqq

0
nz−1;θθθ0]qqqny], (16)

and since the reference output is, by construction, the collected output y(t) generated by
the collected input u(t), is possible to write

yr(t) = S[yr(t)qqqns , u(t)qqqns], (17)

with this, it follows that the control generated with the virtual reference is the same as the
collected control, i.e.

CZ [r̄(t)qqq0nz−1, ē(t)qqq
0
nz−1, y(t, θθθ0)qqq

0
nz−1;θθθ0] = u(t) (18)

which, from (15), gives

CZ [r̄(t)qqq0nz−1, ē(t)qqq
0
nz−1, y(t)qqq

0
nz−1;θθθ0] = u(t), (19)

seeing CZ as C in (14), and since θθθ0 is the unique minimizer of JV (θθθ), (19) is the minimum
of (14) with θθθ0 being the arg min of both (14) and (10).

Theorem 2.3.1 gives the main result of the of VRFT approach, in the next sections
some of the assumptions made in its development will be dropped in order to show the
consequences and to make the problem closer to what will be latter used.

24

2.4 Mismatched Controller

When Assumption 2.3.1 is not satisfied, the argument used in 2.3.1 is not valid any-
more since no parameter vector θθθ would make J(θθθ) = 0. This case is known as the
mismatched case.

To deal with this problem the idea is to make, in a way, J(θθθ) ≈ JV (θθθ) by means
of a filter applied on the data. For the linear case the filter is formulated in a way that
the approximation is made globally whereas in the non-linear case, the approximation is
made in a way that only the second derivative of the cost functions is approximated.

The filter itself is a SISO linear system defined as

s(t) = L [s(t)qqqnl
, v(t)qqqnl

] (20)

where s(t) is the output and v(t) is the input. Since the filter L is linear, it can be written
as a transfer function, i.e. as

s(t) = L(q)v(t), (21)

where L(q) is the transfer function of the system L.
Whether in the linear or nonlinear case, a new cost function for the filtered VRFT is

defined as
JV F = Ē

[
L
(
u(t)− C[qqq0nc−1z̄zz

T (t), u(t)qqqnc ;θθθ]
)]2

. (22)

In the next sub-sections, the linear and nonlinear filter versions will be developed to
show the approach used in the VRFT method.

2.4.1 Linear VRFT

To better understand the role of the matching filter in the nonlinear VRFT, it is inter-
esting and productive to, first, understand its role in the linear case, as the results can be
shown in a cleaner and compact way.

To do so, Assumptions 2.3.2 to 2.3.4 and the following assumption are in order for
this subsection

Assumption 2.4.1. All systems are linear, i.e., the maps S, C and Z are linear.

In the linear case the authors of (CAMPI; LECCHINI; SAVARESI, 2002) make the
two cost functions J(θθθ) and JV F (θθθ) equal by means of filtering both the virtual error and
the measured control with L. To simplify the analysis, it is considered that the measure-
ment system is such that z(t) = e(t), and also, analogous to the filter transfer function
definition of (21), the transfer functions of the system, controller, ideal controller and ref-
erence system are defined as C, S, Cd and Sr. The control architecture for this setup is
shown in Figure 3.

In view of linearity, it is also possible to write the model reference cost function (10)
as

25

Figure 3 – Control architecture for the simplified linear case.

SC
r(t) e(t) u(t) y(t)

Source: author

J(θθθ) = Ē [(S(q, θθθ)− Sr(q)) r(t)]
2 , (23)

where the closed loop relations, S(q, θθθ) and Sr(z) are, using the transfer functions, given
by

S(q, θθθ) =
C(q, θθθ)S(q)

1 + C(q, θθθ)S(q)
; Sr(q) =

Cr(q)S(q)

1 + Cr(q)S(q)
. (24)

The VRFT cost function can be written as

JV F (θθθ) = Ē [L(q) (u(t)− C(q, θθθ)ē)]2 . (25)

As in the analysis made in (BAZANELLA; CAMPESTRINI; ECKHARD, 2011), ap-
plying the Parseval’s Theorem to (23) gives, after some manipulation,

J(θθθ) =
1

2π

∫ π

−π
|S(ejω)|2|T (ejω, θθθ)|2|Tr(ejω)|2|C(ejω, θθθ)− Cr(e

jω)|2Φr(e
jω)dω (26)

where the sensitivities T (ejω, θθθ) and Tr(ejω) are

T (ejω, θθθ) =
1

1 + S(q)C(q, θθθ)
; Tr(e

jω) =
1

1 + S(q)Cr(q)
. (27)

Similarly, applying Parseval’s Theorem to (25) gives

JV F (θθθ) =
1

2π

∫ π

−π
|L(ejω)|2 |S(e

jω)|2|Tr(ejω)|2
|Sr(ejω)ejω|2

|Cr(ejω)− C(ejω, θθθ)|2Φu(e
jω)dω. (28)

In this case, it is also possible to prove Theorem 2.3.1 by noting that both (26) and (28)
have its minimum at θθθ = θθθ0 since Cr(q) = C(q, θθθ0), which makes the term |Cr(ejω) −
C(ejω, θθθ)|2 be zeroed in both cost functions.

Here, however, there is no parameter vector θθθ that makes Cr(q) = C(q, θθθ), and, since
all the other multiplicative terms are different between (26) and (28), the argument that
minimizes the two cost functions does not need to be the same.

Theorem 2.4.1 gives conditions that validate the VRFT approach in the mismatched
controller case.

Theorem 2.4.1. If the filter L(q) is such that

|L(ejω)|2 = |Sr(ejω)|2|T (ejω, θθθ)|2
Φr(e

jω)

Φu(ejω)
, (29)

the cost functions J(θθθ) and JV F have their minimum at the same θθθ.

26

Proof. Using (29) into (28) reduces the latter to (26).

Since T (ejω, θθθ) depends on the system model, the filter itself does as well. There are
many ways to deal with this problem. For instance, one could, with the IO data, identify
the system model and use it in the filter. The explicit identification of the system is,
however, part of what Data Based control methods try to avoid.

Another way to deal with the problem of the dependence of L onto the system model
is to assume that:

Assumption 2.4.2. The sensitivities T (ejω, θθθ) and Tr(ejω) are close. i.e., T (ejω, θθθ) ≈
Tr(e

jω).

With this assumption, the filter can be written as

|L(ejω)|2 = |Sr(ejω)|2|1− Sr(e
jω)|2Φr(e

jω)

Φu(ejω)
, (30)

which is as valid as the Assumption 2.4.2 is.

2.4.2 Nonlinear VRFT

In the nonlinear case, the authors of (CAMPI; SAVARESI, 2006) make J(θθθ) ≈
JV F (θθθ) only in the second derivative. i.e., the filter L(q) in (22) is such that

∂2JV F (θθθ)

∂θθθ2

∣∣∣∣
θθθ0

=
∂2J(θθθ)

∂θθθ2

∣∣∣∣
θθθ0

. (31)

To obtain the filter the following assumption is made in (CAMPI; SAVARESI, 2006):

Assumption 2.4.3. The reference model map Sr is linear with transfer function Sr(q).

The control architecture is also simplified to consider that z(t) = e(t), which is shown
in Figure 4.

Figure 4 – Control Architecture

SCr(t) e(t) u(t) y(t)

Source: author

Theorem 2.4.2 gives a filter that satisfies the condition on (31).

Theorem 2.4.2. Let L be the cascade connection between L1 and L2 such that the filter

input signal u(t) is filtered to uL(t) as

uL(t) = L[uL(t)qqqnsr
, u(t)qqqns] = L2[uL(t)qqqnsr

,L1[v(t)qqqns , u(t)qqqns]qqqnsr
], (32)

27

where v(t) is the output of L1, ns is the number of delays used in the map L1 and nsr is

the number of delays used in the map L2.

With L1 as

L1[v(t)qqqns , u(t)qqqns] = v(t)qqqTns

∂S
∂y(t)qqqns

+ u(t)qqqTns

∂S
∂u(t)qqqns

, (33)

where the terms of S were omitted, i.e. S = S[y(t)qqqns , u(t)qqqns] and, e.g., the last partial

derivative is the partial derivative of S with respect to the vector of past controls u(t)qqqns .

And L2 have its transfer function L2(q) given by

L2(q) = 1− Sr(q). (34)

The condition in (31) is met with the filter (32).

See the appendix of (CAMPI; SAVARESI, 2006) for the proof of the Theorem 2.4.2.
Approximating the second derivative of the two cost functions is not the only sensible

choice, in fact the authors of (ESPARZA; SALA; ALBERTOS, 2011) use the filter to
accomplish a different approximation. There the objective of the filter is to approximate
only the fist derivative of the two cost functions, i.e.

∂JV F (θθθ)

∂θθθ

∣∣∣∣
θθθ0

=
J(θθθ)

∂θθθ

∣∣∣∣
θθθ0

(35)

The approach to satisfy this requirement is to filter, with a filter L, the derivative of
the controller with respect to its parameters. Theorem 2.4.3 states how to obtain a filter
that satisfies the condition on (35). Where it is also considered that the measurement is
such that z(t) = e(t).

Theorem 2.4.3. Let L be the cascade connection between L1 and L2 such that the input

signal ∂C/∂θθθ is filtered to dy(t;θθθ)/dθθθ as

dy(t;θθθ)

dθθθ
=L
ï
dy(t;θθθ)

dθθθ
qqqns ,

∂C
∂θθθ

ò
=L2

ï
dy(t;θθθ)

dθθθ
qqqns ,L1

ï
du(t)

dθθθ
qqqnc ,

dy(t;θθθ)

dθθθ
qqqnc ,

∂C
∂θθθ

ò
qqqns

ò (36)

where L1 is

du(t)

dθθθ
= L1

ï
du(t)

dθθθ
qqqnc ,

dy(t;θθθ)

dθθθ
qqqnc ,

∂C
∂θθθ

ò
=
∂C
∂θθθ

− ∂C
∂e(t)qqqnc

T dy(t;θθθ)qqqnc

dθθθ
+

∂C
∂u(t)qqqnc

T du(t)qqqnc

dθθθ
,

(37)

and

dy(t;θθθ)

dθθθ
= L2

ï
dy(t;θθθ)

dθθθ
qqqns ,

du(t)

dθθθ
qqqns

ò
=

∂S
∂u(t)qqqns

T du(t)qqqns

dθθθ
+

∂S
∂y(t)qqqns

T dy(t)qqqns

dθθθ
.

(38)

The condition on (35) is met with the filter (36).

28

See (ESPARZA; SALA; ALBERTOS, 2011) for a proof of Theorem 2.4.3.

2.4.3 Filter application

As shown, in the linear case the filter is applied on the virtual error, obtained using the
collected output data, and on the input data, also obtained in the experiment. Although
the ideal filter does depend on S, a filter approximation is constructed using only the
reference model Sr and the spectrum of the input and output data.

For the nonlinear case, however, the filter is dependent on the system model S and no
approximate filter is proposed in the presented literature. In fact, it is recommended to,
from the IO data or basic physical principles, formulate the system model to use in the
filter. Using the method in such a fashion does make it an indirect method, as discussed
in (CAMPI; SAVARESI, 2006), which is, perhaps, an undesired result.

Another thing to mind is the complexity of implementing a filter as proposed in (36).
With this filter, the application of the optimization algorithm on C would have to rely on
two connected difference equations with input and output of the size of the parameter
vector θθθ, which, for parametrizations that rely on many parameters, as is usually the case
with Deep Neural Networks, could have a prohibitive computational cost. This might be
the reason to why no DNN with more than 21 parameters was used in (ESPARZA; SALA;
ALBERTOS, 2011).

It is interesting to note the role of the filter presented in Theorem 2.4.2. As pointed
out in (CAMPI; SAVARESI, 2006), the first part of the filter, i.e., L1, is responsible to
account for the effect of the input, used in JV (θθθ) cost, on the output, used in the J(θθθ)
cost. The second part of the filter, i.e., L2, has its transfer function L2 with a small
magnitude frequency response in frequencies where Sr(q) ≈ 1. This effect incorporates
on JV F (θθθ) the low sensitivity of J(θθθ) to errors on those frequencies where Sr(q) ≈ 1.
Since the magnitude of Sr(q) also usually drops over high frequencies, the main function
of L2 is to penalize less the errors on the frequency range where Sr(q) ≈ 1.

As shown in (CAMPI; SAVARESI, 2006), the filter in (32) is a generalization of the
linear filter version of (29), which, in turn, can be approximated by (30), which does not
require the system model S. That is the reason why the filter LD, with transfer function
LD given by

LD(q) = (1− Sr)
Sra

1− q
, (39)

is used in the rest of this work. In (39), the term a/(1− q) is as such because it is assumed
that this is the spectrum of the reference signal over the spectrum of the control signal.
The therm a is calculated to make LD(q) have unitary steady state gain. This is important
because the control signal will be filtered by LD(q) and if it does not have a unitary gain,
the filtered control might have a range far off the unfiltered control.

29

2.5 Non Unique Minimizer of JV (θθθ)

Assumption 2.3.4 is made only to simplify the proof of the Theorem 2.3.1 because it
allows to think that each parameter vector forms a single map C. But the actual require-
ment is that, whatever the parameter vector is, its parametrized control map, say C(·;θθθn),
generates the collected input when feed by the virtual signals. This means that the same
argument of the proof of Theorem 2.3.1 can be made even if this assumption is not met,
as states the Theorem 2.5.1.

Theorem 2.5.1. Given the assumptions 2.3.1 to 2.3.3, let both θθθ0 and θθθ1, with θθθ0 ̸= θθθ1,

be the global minimum of J(θθθ), i.e., they’re such that J(θθθ0) = J(θθθ1) = 0. Then it follows

that arg min JV (θθθ) = arg min J(θθθ) = θθθ0 and arg min JV (θθθ) = arg min J(θθθ) = θθθ1.

Moreover, it follows that

u(t) = CZ [r̄(t)qqq0nz−1, ē(t)qqq
0
nz−1, y(t)qqq

0
nz−1;θθθ0]

= CZ [r̄(t)qqq0nz−1, ē(t)qqq
0
nz−1, y(t)qqq

0
nz−1;θθθ1],

(40)

which means that, although θθθ0 ̸= θθθ1, the maps generated by θθθ0 and θθθ1 are the same.

Proof. Since J(θθθ0) = 0 and J(θθθ1) = 0 it follows that

yr(t) = y(t, θθθ0) (41)

and
yr(t) = y(t, θθθ1) (42)

which makes
yr(t) = y(t, θθθ0) = y(t, θθθ1) (43)

with y(t, θθθ0) given by (16) and y(t, θθθ1) is given by replacing θθθ0 with θθθ1 in (16). Using
(17) it follows (18) and that

CZ [r̄(t)qqq0nz−1, ē(t)qqq
0
nz−1, y(t, θθθ1)qqq

0
nz−1;θθθ1] = u(t) (44)

from which, using (43), (40) follows.

Thus, as shown, the fact that the parametrization of C can make JV (θθθ) have multi-
ple global minima does not pose a conceptual problem, since all sets of parameters that
minimize JV (θθθ) also minimize J(θθθ) and generate the same control map C.

2.6 Effects of Measurement Noise

When the noiseless system assumption, i.e., Assumption 2.3.3 is not satisfied, the
parameter vector that globally minimizes the cost function θ̂θθ0 is no longer deterministic,
but instead it is a stochastic estimate of the real parameter vector θθθ0.

30

The VRFT method transforms the control design problem of an unknown system into
an identification problem. Dealing with measurement noise in a system identification
problem is the norm and many approaches for those problems are presented in standard
textbooks such as (LJUNG, 1999; SÖDERSTRÖM; STOICA, 1989). However, although
the system S has measurement noise, this is not the case with the identification done
by minimizing the JV (θθθ) cost function, since the identification is done on the virtual
measurement z̄zz(t) and the collected control u(t).

The difference arises from the fact that the virtual error ē(t), a component of z̄zz(t),
is constructed using the system output and, this way, the control system C has its input
realization contaminated by noise. This problem is known as Errors-in-Variables which
is recognized as a more difficult problem (SÖDERSTRÖM, 2007, 2018).

The virtual error noise contamination is better described and more easily understood
in the linear case. Because of that, in the following development, Assumptions 2.3.2 to
2.3.4 and 2.4.1 are considered true.

The virtual error is, using the transfer functions and the definition of (13),

ē(t) = (S−1
r (q)− 1)(S(q)u(t) + ν(t)); (45)

ē(t) = (S−1
r (q)− 1)S(q)u(t) + (S−1

r (q)− 1)ν(t); (46)

where its noted that the virtual error is formed by the noiseless virtual error ē0(t)(S−1
r (q)−

1)S(q)u(t) and a noise term which contains all the virtual error’s noise ẽ(t) = (S−1
r (q)−

1)ν(t). With this, the virtual error is

ē(t) = ē0(t) + ẽ(t). (47)

Since the cost function JV (θθθ) uses a controller parametrization that is fed with only
noise free signals, the ideal controller itself is only fed with such signals. This means
that the true ideal control is propagated without noise while what is actually available for
identification is a corrupted measure of zzz(t), i.e. z̄zz(t) = z̄zz0(t) + z̃zz(t), where similarly,
z̄zz0(t) is the noiseless virtual measure and z̃zz(t) is the virtual measure’s noise. The situation
is better depicted in the Figure 5.

Figure 5 – Errors in variables in the VRFT.

Czzz0(t) u(t)

z̃zz(t) zzz(t)

Source: author

As shown in (BAZANELLA; CAMPESTRINI; ECKHARD, 2011; CAMPI; LEC-
CHINI; SAVARESI, 2002) even for the linear case, the parameter vector is shown to be
biased in the standard VRFT approach, i.e., when θθθ is obtained, for a linearly parametrized

31

controller, using the Least Squares formula. This is a serious drawback of the method
since in this case, increasing the number of data samples N does not improve the estimate
θ̂θθ0.

The usual approach to deal with this is to use Instrumental Variables, which is used in
(BAZANELLA; CAMPESTRINI; ECKHARD, 2011; CAMPI; SAVARESI, 2006; CAMPI;
LECCHINI; SAVARESI, 2002) when the controller is linearly parametrized by θθθ. How-
ever, this approach is not so easily expanded for the case of non-linearly parametrized
controllers such as DNNs, and it is still an area of active research, see (LIU; SHANG;
CHENG, 2020) and references therein.

The effect of having a biased θ̂θθ is that the predicted control, generated by CZ [·, ·; θ̂θθ], is
itself biased. One way to measure the prediction bias is to divide the collected data into
two sets, namely the training and test sets.

As the name suggests, the controller model is trained, i.e., has its parameter vector θ̂θθ
calculated via the minimization of JV (θθθ), using only the data in the train set. The cost
is then calculated for the train set, as JVtrain(θθθ) , and the test set, as JVtest(θθθ). An unbiased
predictor2 is then one that makes JVtrain(θ̂θθ) ≈ JVtest(θ̂θθ). This approach is common in
machine learning where the bias problem is seen as the incapability of some model to
generalize to the test data, or simply as over-fitting.

There are many approaches to deal with over-fitting of machine learning models. One
of the most common approaches is the use of L1 and L2 regularization, which basically
introduce a penalization on the model’s weights. Another technique commonly used in
iterative learning algorithms such as gradient descent, is known as early stopping. When
the model is a DNN, approaches such as batch-normalization are also a viable choice to
reduce over-fitting (GOODFELLOW; BENGIO; COURVILLE, 2016).

Since this is a central problem in this work, all those approaches will be better devel-
oped and explained in the chapter 3.

2In the prediction bias sense.

32

3 CONTROLLER PARAMETRIZATIONS

So far, the only assumption that was made about the controller C[qqq0nc−1z̄zz
T (t), u(t)qqqnc ;θθθ]

is that it is parametrized by θθθ, no assumption was made on how this parametrization is
and what class of functions they belong to. Some parametrizations offer nice properties,
e.g., when the function C is linear in θθθ, the minimum of JV has a closed form and can be
readily calculated without any iterative process. But this is not the case of a more general
C[·;θθθ], where the parametrization is not linear in θθθ. Even for parametrizations that are
non-linear in the parameters, some offer desirable properties when gradient based opti-
mization is to be performed on it. that is the case of Deep Neural Networks (DNN) where,
because of its compositional structure, the gradient with respect to the parameters can be
calculated efficiently and at a relative low computational cost, even for a parametrization
with thousands of parameters (GOODFELLOW; BENGIO; COURVILLE, 2016).

It is worth noting that a parametrization that is linear in the parameters is not nec-
essarily linear in the outputs, thus, is possible to parametrize any C∞ function with a
polynomial basis using its Taylor series expansion. This, however, does not always trans-
late well to practical applications, since the complete Taylor series expansion can require
an infinitely long θθθ to perfectly match most functions. And although it is possible to trun-
cate the Taylor series to get an approximation of a function, the truncated version might
not be sufficiently rich for some functions1.

One could hope that the problem of defining a controller can be solved by simply
choosing a parametrization with many parameters, since then Cr is more likely to be in
the defined class of functions, but if this is done carelessly, the gradient calculation might
not be computationally viable, the optimization procedure might be inefficient or even
unstable. Moreover, a richer parametrization is not only more prone to over-fitting, i.e.,
identifying spurious patterns on the data as part of the true generating statistics, but it also
requires more data to find the set of parameters that minimizes the cost function.

The problem of selecting a good controller parametrization is thus a complex one. To
avoid over-fitting, it is desired to select the smallest possible basis2 that contains Cr. At the

1Or, alternatively, the truncated version might not be sufficiently small.
2In the sense of the number of parameters.

33

same time, since the system is unknown, so is the controller class, and defining a smaller
parametrization that does not fully capture Cr might leave room for better performance or
even result in a controller that is unstable.

Sometimes, usually from physical insight, it is known that Cr belongs to some com-
pact parametrization of given structure, but that is not usually the case. Thus, often, the
designer must choose a parametrization that is rich and contains many more parameters
than what is needed to represent Cr and deal with the over-fitting in some other way.

To make matters worse, as nθ grows, so does the computational complexity of the
parametrization itself. Additionally, it is important to consider that in most real life prob-
lems one does not have a practical way of getting as much data as wanted or needed.
Working with limited datasets also introduces errors in the parameter estimation and those
usually grow with a bigger nθ and smaller dataset.

However, the use of nonlinear parametrizations does not come for free. The trade-off
of such approach is that there is no closed form to calculate the parameters and one has
to rely on an iterative algorithm to minimize JV , which for many machine learning algo-
rithms and for most DNNs training approaches is based on gradient descent (CHARU,
2018; GOODFELLOW; BENGIO; COURVILLE, 2016; GÉRON, 2022). Performing
minimization with gradient descent is much more computationally complex than calcu-
lating optimal parameters directly via a closed form solution consisting of some matrix
multiplication and inversion, as is the case with linearly parametrized basis. But, once
in possession of an adequate θθθ, performing inferences, i.e., calculating the output of C
from it is inputs, can be made faster than what would be needed using a polynomial basis
to represent some complex Cr. And for parametrizations with the same number of pa-
rameters, one can expect similar inference complexity regardless of being linear in the
parameters or not.

The chapter begins with polynomial basis, its definition, discussion, motivations and
limitations are presented. Since polynomial basis are linear in the parameters, they’re
simple to define and deal with, offering a good starting point to discuss some properties
of the nonlinear VRFT and a good setup to understand the effect of regularization and the
effects of over-fitting.

After the definition of polynomial basis, DNNs are studied and analyzed, its general
idea is presented in the context of deep feed forward networks, where the motivation and
properties are apparent and easily understood. Then, a review of recurrent neural networks
is presented along with two famous cells, namely, long short term memory (LSTM) and
gated recurrent unit (GRU).

Then, a review of regularization in the machine learning context is presented. Regu-
larization is important because it is possible to mitigate the effects of big nθ with its use,
as will be shown in section 3.3.3.

34

3.1 Polynomial

Polynomial basis can be considered the simplest nonlinear extension of linear basis.
This is because the polynomial basis are a super-set3 of linear basis where the extra ele-
ments are given by raising powers and multiplying elements of the linear basis.

The total degree of a multivariate polynomial is the highest total degree of its mono-
mials with non-zero coefficients. The total degree of a monomial, in turn, is simply the
sum of each variable exponent.

Let the variable vector xxx =
î
x1 x2 · · · xn

óT
with xxx ∈ Rn, the index vector ααα =î

α1 α2 · · · αn
óT

withααα ∈ Nn and the parameter vector θθθ =
î
θ1 θ2 · · · θnθ

óT
with

θθθ ∈ Rnθ . Then the n variable polynomial P (xxx;θθθ) of total degree m has the index set

I = {ααα | ∥ααα∥1 ≤ m}, (48)

which is the set of exponents that will be used to construct the polynomials and that has
cardinality |I| = nθ and elements I = {ααα1, ααα2, , · · · , αααnθ

}. Where the j-th element
of the i-th index vector of the set is represented as αi,j . With this, using the index set,
P (xxx;θθθ) is defined as

P (xxx;θθθ) :=

nθ∑

i=1

θi

n∏

j=1

x
αi,j

j . (49)

It should be noted that, in (49), the parameters θi appear inside the summation, and
one could express P (xxx;θθθ) by

P (xxx;θθθ) = θθθTXXX, (50)

with

XXX =

∏n
j=1 x

α1,j

j∏n
j=1 x

α2,j

j

...∏n
j=1 x

αi,j

j

...∏n
j=1 x

αnθ,j

j

. (51)

Which makes explicit the fact that although P (xxx;θθθ) is not linear in xi, it is linear
in the parameter vector θθθ. This makes its use as the controller parametrization specially
appealing since then JV (θθθ) may have a single minimum with a closed expression for its
value.

In this fashion, to define the controller C[qqq0nc−1zzz
T (t), u(t)qqqnc ;θθθ], is useful to define

the matrix Z = qqq0nc−1zzz
T (t) and to note that the i-th column zzzi correspond to the i-th

measurement signal of the system with nc−1 past samples.

3A set that contains at least this set.

35

With this, one can define a controller basis that is a separate polynomial in each mea-
sure and output as

C[qqq0nc−1zzz
T (t), u(t)qqqnc ;θθθ] =

nz∑

i=1

P (zzzi;θθθzi) + P (u(t)qqqnc ;θθθu), (52)

where θθθ =
î
θθθTz1 θθθTz2 · · · θθθTznz

θθθTu

óT
.

This parametrization would imply that the system has a form of separation between
its variables since no cross term would appear in the polynomial of (52). This can be a
valid assumption for some systems but, more importantly, reduces the final nθ, offering a
more parsimonious controller.

Although valid for some systems, this simplifying assumption might be too strong,
when the cross terms are required, one can define the variable vector as

xxxc =
î
zzzT1 zzzT2 · · · zzzTnz

u(t)qqqTnc

óT
, (53)

in this case the controller parametrization is

C[qqq0nc−1zzz
T (t), u(t)qqqnc ;θθθ] = P (xxxc;θθθ). (54)

It should be noted that, apart from the different indices for the parameters, the parametriza-
tion in (52) is a subset of (54).

On the other hand, both (52) and (54) can be made simpler by making P (xxx;θθθ) itself
simpler. In this notation, this can be done by simply changing the index set. One possible
such change is to define a simpler index set Is as

Is = {ααα | ∥ααα∥1 ≤ m and αi ≤ 1} (55)

with its polynomial Ps(xxx;θθθ)

Ps(xxx;θθθ) :=
∑

ααα∈Is

θi

n∏

j=1

x
αj

j . (56)

Using (56) in the controller parametrization (52) to generate the following parametriza-
tion

C[qqq0nc−1zzz
T (t), u(t)qqqnc ;θθθ] =

nz∑

i=1

Ps(zzzi;θθθzi) + Ps(u(t)qqqnc ;θθθu), (57)

or in (54) with xxxc from (53)

C[qqq0nc−1zzz
T (t), u(t)qqqnc ;θθθ] = Ps(xxxc;θθθ). (58)

On comparing the parametrization in (52) with its analogue (57), it is clear that the
latter is a subset of the former, with usually many fewer parameters. The same is true
when comparing (54) with (58).

36

The reasoning in the definition of Ps(xxx;θθθ) is that the likelihood of squared and higher
order exponents terms rapidly increase as the total degree of the polynomial grows. Thus,
unless the true generating statistics have higher order exponents, the parametrization will
rapidly have many terms that do not belong to Cr.

Those simpler parametrization, when used as C, has the underlying simplifying as-
sumption that the reference controller Cr is still sufficiently close to the defined class.
Which, when true, allows a more parsimonious controller4 to be found using the VRFT
method.

Still, without knowing the underlying system dynamics and, by consequence, the ref-
erence controller basis, is hard to know which one of these basis is the best. Which means
that, at least a priori, no particular basis presented in this section is inherently more effi-
cient or better than the others.

3.2 Deep Neural Networks

Deep Neural Networks can be seen as a result of the study of Artificial Neural Net-
works (ANNs), a machine learning model inspired in networks of biological neurons in
human brains. They were first introduced in 1943 in (MCCULLOCH; PITTS, 1943),
where a simplified computational model of the brain was developed to perform complex
computations. In this first model, the weights could be set by a human operator such that
the output is as desired from the inputs.

The perceptron, proposed in (ROSENBLATT, 1958), was the first ANN model that
had a way of automatically learning the correct weights. The algorithm used was a heuris-
tic update in the weights and it was not posed in terms of the optimization of a loss func-
tion as is common today, although the objective was implicitly to minimize the prediction
error.

The perceptron, however, has many limitations, most of them due to the fact that the
perceptron has a single layer, which can be fixed by simply adding more layers to the
perceptron, creating what is called the multi layer perceptron (MPL). The only problem
is that then the heuristic to the weights update proposed for the single layer perceptron
(SLP) no longer works.

Soon after that, the idea of posing the problem as the minimization of a cost index
and using gradient descend to update the weights was already discussed (GÉRON, 2022).
This requires the calculation of the gradient of the cost index with respect to the param-
eters, which is easily achieved using the chain rule of differentiation and allows training
MLPs. The problem, however, was on how to perform such a calculation using the limited
computing power available at the time for complex models with many parameters.

This problem was solved in (LINNAINMAA, 1976, 1970) where the reverse mode

4One with fewer parameters.

37

of automatic differentiation algorithm was presented. This algorithm was introduced in
the context of calculating gradients of acyclic graphs, without any specific reference to
ANNs. In fact, it took about four decades to this algorithm be used to efficiently calculate
gradients in the ANN context (SCHMIDHUBER, 2015).

In this section, the SLP will be first presented to define the basic notation and to set
the main intuition about DNNs. The DNN will then be introduced in the context of the
simpler dense feed-forward neural network.

Following that, a discussion on how to train DNNs using stochastic gradient descent
(SGD) will then be present. Following with a discussion on the use of backpropagation
to calculate the gradients needed in the SGD.

In the sequence, Recurrent Neural Networks will be presented and discussed. Fol-
lowed by their specific training algorithm and other particularities, as the different types
of cells used for some problems such as Long Short Term Memory and Gated Recurrent
Unit cells.

3.2.1 The Perceptron

The single layer percepetron is nothing more than a very simple neural network, it
contains an input layer and an output layer. The simplest possible perceptron has a single
output node. Its architecture is shown in Figure 6.

Figure 6 – The perceptron.

x1

x2

x3

xn

...

y1

w
(1)
1,1w
(1)
1,1

w
(1)
1,2w
(1)
1,2

w
(1)
1,3w
(1)
1,3

w
(1)
1,nw
(1)
1,n

Input
layer

Output
layer

Source: author

In Figure 6, all inputs xi are in the input layer, since this layer does not perform any
calculation, its not counted in the total number of layers of the neural network, hence,
the figure shows a single layer NN. The output y1, in the perceptron, is the result of the
activation function σ contained in its node, the input of this function is given by the linear
combination of all inputs xi, where the weights or coefficients of this linear combination

38

are w(1)
1,i and the bias5 is b(1), where the upper 1 means first layer, a notation that will

become useful later on. More precisely, the output is given by

y1 = σ

(
b(1) +

n∑

i=1

w
(1)
1,i xi

)
, (59)

where the activation function σ is any nonlinear function and it is problem dependent.
Equation (59) can also be written in matrix form, which simplifies the notation. Let

W (i) ∈ R1×pi , where pi is the number of parameters of the i-th layer, be the weight matrix
of layer i with entry wij,k, xxx =

î
x1 x2 · · · xn

óT
. The output of the perceptron is then

given by
y = σ

Ä
W (1)xxx+ b(1)

ä
. (60)

The original perceptron, as defined in (ROSENBLATT, 1958), used a step for activa-
tion function. This was used an approximation of what biological neurons were thought
do or compute at the time, this is why in some contexts the computational nodes in a
general neural network are named neurons.

The perceptron was generally used in the context of classification (GÉRON, 2022),
where it was a somewhat capable classifier, although it was famously known to not be
able to approximate the exclusive or (XOR) function, a problem that is solved in the
Multilayer Perceptron.

By organizing the weights and biases in a single parameter vector θθθ, one can see the
perceptron as a simple parametrized function h(xxx;θθθ), which, for a given θθθ, h : Rn → R.
The optimal or desired θθθ, in this context, is the one that makes h close to the function that
generated the data, and the process of learning is nothing more than finding this set of
parameters.

It is also possible to generalize the perceptron from a multi-input, single-output to
a multi-input, multi-output, i.e., to make h such that h : Rn → Rm. The multi-output
perceptron is shown in Figure 7.

Making the output as yyy =
î
y1 y2 · · · ym

óT
, the perceptron in Figure 7 calculates

its output vector from the inputs as

yyy =

y1

y2
...

ym

=

σ1
Ä
b(1) +

∑n
i=1w

(1)
1,i xi
ä

σ2
Ä
b(1) +

∑n
i=1w

(1)
2,i xi
ä

...

σm
Ä
b(1) +

∑n
i=1w

(1)
m,ixi
ä

. (61)

The representation in (61) is general in the sense that it assumes that each output has
its own activation function. However, the usual approach is to consider that each layer has
a single activation function that operates in an element-wise fashion, i.e., in each element
of the vector. With this, (61) is simplified to

5Not represented in the Figure.

39

Figure 7 – The multi-output perceptron.

x1

x2

xn

...

y1w
(1)
1,1w
(1)
1,1

w
(1)
1,2w
(1)
1,2

w
(1)
1,nw
(1)
1,n y2

w
(1)
2,1w
(1)
2,1

w
(1)
2,2w
(1)
2,2

w
(1)
2,nw
(1)
2,n

ym

w
(1)
3,1w
(1)
3,1

w
(1)
3,2w
(1)
3,2

w
(1)
3,nw
(1)
3,n

...

Input
layer

Output
layer

Source: author

yyy =

y1

y2
...

ym

= σ

â

b(1) +
∑n

i=1w
(1)
1,i xi

b(1) +
∑n

i=1w
(1)
2,i xi

...

b(1) +
∑n

i=1w
(1)
m,ixi

ì
. (62)

Making the bias vector as bbb(1) =
î
b
(1)
1 b

(1)
2 · · · b

(1)
m

óT
and using the matrix notation,

the multi-output perceptron calculation, represented in Figure 7, is given by

yyy = σ(1)(W (1)xxx+ bbb(1)). (63)

Since the perceptron was conceived with the intent of being used as a classifier, i.e.,
given some features xxx the objective is to correctly predict in which class yi the features
belong to, its training algorithm was created to increase the chance of the classification
performed by the perceptron being correct (CHARU, 2018).

3.2.2 The Multilayer Perceptron

The perceptron is mainly effective to classify data that is linearly separable, i.e., if
xxx ∈ Rn, each class yi is correctly divided by a hyper-plane in Rn. Real world data,
however, does not always fall in this category and the perceptron struggles to perform
well in those cases.

The solution to this problem is to increase the representative power of the perceptron,
which is done by simply adding more layers. A multilayer perceptron with two layers is
depicted in Figure 8.

40

Figure 8 – The two layer perceptron.

x1

x2

xn

...

h
(1)
1w

(1)
1,1w
(1)
1,1

w
(1)
1,2w
(1)
1,2

w
(1)
1,nw
(1)
1,n

h
(1)
2

w
(1)
2,1w
(1)
2,1

w
(1)
2,2w
(1)
2,2

w
(1)
2,nw
(1)
2,n

h
(1)
p

w
(1)
3,1w
(1)
3,1

w
(1)
3,2w
(1)
3,2

w
(1)
3,nw
(1)
3,n

...

y1w
(2)
1,1w
(2)
1,1

w
(2)
1,2w
(2)
1,2

w
(2)
1,pw
(2)
1,p y2

w
(2)
2,1w
(2)
2,1

w
(2)
2,2w
(2)
2,2

w
(2)
2,pw
(2)
2,p

ym

w
(2)
3,1w
(2)
3,1

w
(2)
3,2w
(2)
3,2

w
(2)
3,pw
(2)
3,p

...

Input
layer Hidden layer

Output
layer

Source: author

The output yyy of the MLP in Figure 8 is, in vector notation, given by

yyy = σ(2)
Ä
W (2)σ(1)

Ä
W (1)xxx+ bbb(1)

ä
+ bbb(2)

ä
= hhh(2)

Ä
hhh(1) (xxx)

ä
yyy = hhh(2) ◦ hhh(1) ◦ xxx

(64)

where hhh(2) = yyy and the weight matrix of layer i, W (i) ∈ Rpi−1×pi , where pi is the number
of parameters of the i-th layer, has entry wij,k.

But a MLP can have any number of hidden layers. A general MLP with l layers, as
shown in Figure 9, can be represented by

yyy = σ(l)
Ä
W (l)σ(l−1)

Ä
· · ·σ(2)

Ä
W (2)σ(1)

Ä
W (1)xxx+ bbb(1)

ä
+ bbb(2)

ä
· · ·+ bbb(l−1)

ä
+ bbb(l)

ä
;

yyy = hhh(l) ◦ hhh(l−1) ◦ · · · ◦ hhh(2) ◦ hhh(1) ◦ xxx;
(65)

where W (i) ∈ Rpi−1×pi , which, letting hhh(1) = σ(1)
(
W (1)xxx+ bbb(1)

)
, can be represented

more clearly as a recurrence

hhh(i) = σ(i)
Ä
W (i)hhh(i−1) + bbb(i)

ä
, i ∈ {2, · · · , l}, (66)

where yyy = hhh(l) = σ(l)
(
W (l)hhh(l−1) + bbb(l)

)
and hhh(i) ∈ Rpi .

One characteristic of the weight update algorithm of the perceptron, i.e., the training
algorithm, is that the weights are updated in a heuristic fashion that does not expand
well to the case of the multilayer perceptron, the reason is that the algorithm updates the
weights based on the error made by the output, but there is no clear way to calculate the

41

Figure 9 – The multilayer perceptron.

x1

x2

xn

...

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
p1

...

· · ·

· · ·

· · ·

· · ·

...

h
(l−1)
1

h
(l−1)
2

h
(l−1)
pl−1

...

y1

y2

y3

ym

...

Input
layer

Hidden layers

Output
layer

Source: author

error in the hidden layers since the collected data does not contain any information about
what should be the values in those internals representations.

The remedy for this problem is to pose the training as an optimization and to use
gradient descent to update the weights, this is the subject of subsection 3.2.5. The multi-
layer perceptron is also often referred to as the deep neural network (DNN) because the
information from the input layer travels many hidden layers before getting into the output
layer. There is not a consensus on how many layers are need to a model to be considered
deep. Some authors, like (GÉRON, 2022), consider deep any MLP, this is the convention
that will also be adopted here.

As discussed in subsection 3.2.1, the perceptron is not capable of learning the XOR
function. The MPL, however, is capable of that using only a single hidden layer with
two nodes, as shown in the next example, adapted from (GOODFELLOW; BENGIO;
COURVILLE, 2016).

Example 3.2.1 (XOR function as an MLP). The exclusive or function has two inputs, x1
and x2, and one output y1. It returns true only if one input is true and the other is false.

All possible inputs and outputs of this function are captured in the input matrix X and

output matrix Y , where each line is a data point, and has values

X =

0 0

0 1

1 0

1 1

; Y =

0

1

1

0

. (67)

The MLP capable of capturing this behavior is shown in Figure 10.

42

Figure 10 – The multilayer perceptron for the XOR problem.

x1

x2

h
(1)
1w

(1)
1,1w
(1)
1,1

w
(1)
1,2w
(1)
1,2

h
(1)
2

w
(1)
2,1w
(1)
2,1

w
(1)
2,2w
(1)
2,2

y1

w
(2)
1,1w
(2)
1,1

w
(2)
1,2w
(2)
1,2

Input
layer Hidden layer

Output
layer

Source: author

In Figure 10, the activation function of the hidden layer is a ReLU, the output layer’s

activation function is simply a linear function. The weights are organized in matrices

W (k) with elements w(k)
i,j shown in Figure 10 and with values

W (1) =

[
1 1

1 1

]
; W (2) =

î
1 −2

ó
; (68)

and biases

b(1) =

[
0

−1

]
; b(2) = 0; (69)

The input matrix is organized with one example per line, the same as the output vec-

tor (or matrix, in some other case where there is more than one output). The beauty of

the matrix representation is of course more than just notational sugar, with it one can effi-

ciently perform predictions on a whole batch in one single pass. Although this makes little

difference in this case, where all the data fits in a batch which contains four examples, it

makes a big difference for the usual use case of DNNs, where one usually have thousands

of examples.

The first layer calculation of the neural network prediction is then

H(1) = σ(1)
Ä
W (1)XT +B(1)

ä
= σ(1)

([
1 1

1 1

][
0 0 1 1

0 1 0 1

]
+

[
0 0 0 0

−1 −1 −1 −1

])
;

= σ(1)

([
0 1 1 2

−1 0 0 1

])
=

[
0 1 1 2

0 0 0 1

]
;

(70)

where the bias matrix B(1) is constructed with the repeated concatenation of the bias

vector bbb(1) in a way that matches the dimension of XT and, similarly, H(1) is given by

the concatenation of the hidden vectors hhh(1), where each column is generated by a corre-

sponding line in the data matrix.

43

Notice that the last step is simply the aplication of the ReLU activation function

in a element-wise fashion, i.e., applied in each element of the matrix, general activa-

tion functions will be shortly discussed in subsection 3.2.3, but the ReLU is given by

σReLU(x) = max(0, x).

Since σ(2) is a simple linear activation function and the bias vector is zero, the output

layer calculation is given by a single matrix multiplication

Ŷ = σ(2)
Ä
W (2)H(2) +B(2)

ä
=
î
1 −2

ó[0 1 1 2

0 0 0 1

]
=

0

1

1

0

. (71)

The predicted output, Ŷ is exactly equal the target output Y , and the mean squared

prediction error, measured on Ŷ of (71), is zero.

As shown, a DNN is far more powerful than a simple perceptron, this is due to com-
posing nonlinear functions. It should be noted that a deep neural network composed only
of linear activation functions cannot be more representative than a single layer perceptron.
Because then, for any layer, its output are just the linear combination of the previous layer,
which leads to the output of the DNN itself being a linear combination of the inputs.

The usefulness of depth in DNNs is that it allows a more efficient representation, as
shown in (MONTÚFAR, 2014), a deep belief network (DBN), a kind of DNN, with finite
deepness and width (the number of nodes in a layer), can approximate any probability
distribution with arbitrarily small error.

3.2.3 Activation Functions

As shown, each node in a DNN can be decomposed into two major parts, first, the
multiplication of the node’s weights with the node’s inputs, resulting in a scalar second,
passing the result trough a activation function, which is often a non-linearity.

This non-linearity can, theoretically, be any function σ : R → R. But, in most
practical applications, only some activation functions that offer some benefit in training
or are specially useful on giving the DNN a desired behavior are used. One such property
is to have an activation function that produces non-saturating gradients, which helps with
the problem of vanishing gradients.

In DNNs, a single activation function is typically defined for a whole layer, which
helps to make the DNN’s architecture more succinct. In those cases, the activation func-
tion is often represented as acting on the whole layer and it is implied that it acts separately
in each element, is said to act element-wise.

Since many activation functions are squashing functions, i.e., a function that has a
bounded image for an unbounded domain, the activation function of the output layer is

44

often an affine function, unless, of course, it is desired that the output is in fact bounded
or possess some other useful property.

The Machine Learning community have developed many activation functions for many
specific use cases, in this work, however, only the activation functions used will be pre-
sented.

3.2.3.1 Linear

The linear activation function is simply

σa(x) = x. (72)

The σa has the property of not being bounded, and is, for this reason, used mainly in
the output layer of a DNN.

3.2.3.2 Rectified Linear Unit (ReLU)

The ReLU activation function is given by

σReLU(x) =

{
x, ∀x ≥ 0;

0, ∀ x < 0;
(73)

This function can be seen as a negative saturated affine function, it is used in many
famous architectures and shown to perform as well as many other activation functions.
All while allowing faster calculations and easier code optimization than functions like
sigmoid or hyperbolic tangent (GÉRON, 2022).

3.2.3.3 Signal

The signal function is given by

σsign(x) =

−1, ∀x < 0;

0, if x = 0;

1, ∀x > 0.

(74)

The signal function is used in binary classifiers, i.e., when the model is to choose if a
given input belongs to class 1 or −1. The problem with this activation function is that it
generates a model that has a cost function that is not differentiable, which causes problem
in training, for this reason the σsign activation function is rarely used in modern DNNs.

3.2.3.4 Sigmoid

The sigmoid function is given by

σsgm(x) =
1

1− e−x
. (75)

45

The sigmoid function’s image is in the range [0, 1], it is a smooth squashing function
that gives a given node (or layer) the property of boundedness, this can be beneficial in
problems where the nodes would explode if used with a non-squashing function.

The sigmoid function is also a good choice for classifiers when the output can (or
should) be interpreted as a probability. This function is very famous and many famously
known architectures uses it, that is the case of, for instance, the LSTM cell used in recur-
rent neural networks (CHARU, 2018).

3.2.3.5 Hyperbolic tangent

The hyperbolic tangent function is give by

σtanh =
e−2x − 1

e2x + 1
. (76)

The σtanh is a scaled and translated version of the sigmoid function, it has the same
properties as the sigmoid except that it allows its output to have negative values, its image
in the range [−1, 1].

3.2.4 Cost Functions

Training a DNN is nothing more than minimizing a cost function, usually some form
of measure of the error made by the prediction. This cost function can be any metric, but
it is desirable to have a cost function that measures this error in a differentiable way, to
allow the use of gradient descent optimization techniques.

The ideal cost function is problem dependent, classification problems often use a
cross-entropy loss while regression problems often use the mean squared error. Some
problems, however, need more specific losses to allow a good representation of what the
model should do.

Whatever the loss is, all different losses are, for a predefined dataset, a function
of the parameters of the chosen parametrization, but since the loss measures the dis-
tance between the true output matrix Y and the predicted output matrix Ŷ , where in
a general setup, each output example yyyi ∈ Rny forms the dataset’s output matrix as
Y =

î
yyy1 · · · yyyN

óT
, with elements yi,j and the prediction output matrix is constructed

analogously, sometimes is preferable to represent the cost function as being dependent
of the true and predicted output matrices, i.e., the cost function used in training J(θθθ), a
function of the parameters θθθ, is represented as

J(θθθ) = J(Y, Ŷ (θθθ)), (77)

or J(Y, Ŷ) for short.
Both representations in (77) are equivalent since, for a given dataset, Y is fixed. Us-

ing J(θθθ) is more explicit when in the context of taking derivatives of the cost function
with respect to the parameters, which is the case when in the context of training, while

46

J(Y, Ŷ) is more explicit on the prediction error. For this reason, in this subsection, the
cost function will be referred to as J(Y, Ŷ).

In this work, only regression models will be trained and only with some specific losses,
those will be presented in the next subsections.

3.2.4.1 Mean Squared Error

The mean squared error Jmse(Y, Ŷ) was already discussed in the context of the VRFT
method, it is simply the averaged squared difference of the true and predicted values, i.e.,
the mean squared error. In this more general case, where the output can be a vector instead
of just a scalar as in (10), the mean squared error is

Jmse(Y, Ŷ) =
1

N

N∑

i=1

1

ny

ny∑

j=1

(yi,j − ŷi,j)
2. (78)

3.2.4.2 Mean Squared Logarithmic Error

Some problems require a model that is precise for outputs that are big and small.
In those cases the Jmse(Y, Ŷ) can be problematic, the reason is that it looses sensitivity
around zero. A cost function that penalizes something closer to a percentage error is the
mean square logarithmic error, Jmsle(Y, Ŷ), given by

Jmsle(Y, Ŷ) =
1

N

N∑

i=1

1

ny

ny∑

j=1

(loge(1 + yi,j)− loge(1 + ŷi,j))
2. (79)

When Y, Ŷ ≈ 0 the cost functions Jmse ≈ Jmsle, thus, the way that Jmsle increases
the sensitivity around zero, when compared to Jmse, is by decreasing the importance of
errors when the true and predicted values are greater in magnitude (CHARU, 2018).

It should be noted that to use this cost function, the output dataset needs to be scaled
to be in the range (−1,∞], in application the prediction of the DNN can be just re-scaled
back to the original range using the inverse scaling transformation.

3.2.4.3 Mean Combined Squared Error

In some control problems, such as the VRFT method when on systems that require
operation with very small control inputs, it is important to include the Jmse, since the
Jmsle is biased to underestimation6 and, also, away from the zero error region, it is more
interesting to minimize the Jmse, since it is closer to the formal definition in the VRFT. In
those cases, a convex combination of the two cost functions, Jmse and Jmsle, is defined as

Jmcse(Y, Ŷ) = αcJmsle(Y, Ŷ) + (1− αc)Jmse(Y, Ŷ), (80)

with the combination factor αc ∈ [0, 1].
6The same difference between the real and predicted values produces a greater error if the predicted

value is smaller than the true value than if the predicted value is greater than the true value.

47

The idea behind the Jmcse cost function is that Jmsle dominates when the true and
predicted values are small and Jmse looses sensibility. When the two values are big, the
mean squared error dominates and Jmcse(Y, Ŷ) ≈ Jmse(Y, Ŷ).

3.2.5 Stochastic Gradient Descent

The example of subsection 3.2.2 showed that a DNN can behave as a XOR function
with a given set of weights and biases. Since the dataset in the example consists of only
four samples and the function has a fairly simple behavior, one could select the weights
by trial and error. However, in more realistic applications, one usually has thousands of
samples in the dataset and the underlying generating function is much more complex.

The approach to select the DNN parameters , in those cases, is to define the problem
as a minimization problem and to perform gradient descent on it. Gradient descent just
updates the model’s parameters in the direction that locally minimizes some cost function7

J(θθθ), i.e.,

θθθn+1 = θθθn − α
∂J(θθθn)

∂θθθn
, (81)

where α ∈ R is known as the learning rate, a scalar that determines the size of the step in
the direction that has, locally, the smallest J(θθθ).

A key point to consider is that the cost function is just the average of the per sample
loss, i.e.,

J(θθθ) =
1

N

N∑

i=0

Ji = E [Ji] ∀i ∈ NN . (82)

Thus, to perform a weight update, one has to compute all the per sample loss and
derivatives with respect to the DNN parameters, which is often in the range of thousands
or millions. This can make the computational time of a single weight update prohibitively
long.

An alternative to this approach reveals itself on remembering that the data is assumed
to be collected from a quasi-stationary process. Hence, one can expect that, for a large
enough batch size Nb, the following approximation is valid

J(θθθ) ≈ Ĵ(θθθ) = E [Ji] ∀i ∈ NNb . (83)

Performing the gradient descent with the approximation Ĵ(θθθ) instead of with the full
J(θθθ) is what is known as Stochastic Gradient Descent (SGD). For it to work properly,
Ĵ(θθθ) needs to be sufficiently accurate and unbiased, which translates to both selecting the
batch samples uniformly and with a sufficiently large Nb.

SGD has many advantages over regular gradient descent, but the main one is that it
is memory efficient and fast, this is due to the fact that one can now perform the weights

7In the VRFT problem, the function that will be minimized is actually JV (θθθ), J(θθθ) is referred as the
function minimized by the DNN for a cleaner presentation with a less cluttered notation.

48

update without having to compute all the per sample loss and derivatives of the whole
dataset.

Selecting the correct batch size is somewhat problem dependent, generally one wants
to select the largest possible batch size that does not overflow the machine’s memory in
which the model is being trained, since this will make the better use of parallel capable
computing hardware8 and deliver a better estimate of the true gradient. But selecting
small batch sizes also has its advantages, as note by (WILSON; MARTINEZ, 2003),
small batches offer a regularizing effect. Intuitively what happens is that, since the batch
is chosen at random, small local minima that would appear using the whole dataset might
disappear using a small part of it, which can promote the DNN to not get stuck in local
minima.

Although selecting smaller batches can help with local minima, this alone is often not
enough to deal with this problem. Many changes to the SGD method were proposed to
deal with those problems and to accelerate training, in the following subsections some of
them will be presented.

3.2.5.1 Momentum

An effective approach to deal with local minima and flat regions, proposed in (POLYAK,
1964), is to use a form of momentum in the parameter update, the intuition of momen-
tum based optimization is clearer when one considers that the parameter update of (81)
represents the dynamics of a moving physical object that lives in the Rnθ space.

In this case the objective is to make the object go to the lowest point in the J(θθθ) metric,
which can be though as an altitude in that space. In the analogy, since the object dynamics
is dependent of the local curvature, a mass-less object would be very prone to be stuck in
local holes. If, however, one considers that the object has a mass, then a small hole in the
object’s path would not stop it from moving, which in turn would make it go out of the
hole.

Defining the weight update change as a velocity, i.e.,

θθθn+1 = θθθn + vvvn (84)

it is possible to see the effect of adding a mass to the object dynamics as making the
velocity depend on its past values, i.e.,

vvvn+1 = βvvvn − α
∂J(θθθn)

∂θθθn
, (85)

with β ∈ R known as the friction parameter and vvv0 = 0. Going back to the analogy with
a moving object, when β = 0 the object has no mass. When β > 0 and α ̸= 0, it has
mass and its velocity also depends on the past velocity values. This approach makes the

8Such as GPUs.

49

parameter update automatically speed up in flat regions with small gradients as well as
make the parameter update less sensitive to local minima.

3.2.5.2 Nesterov Momentum

Nesterov momentum is named after its creator, which presented in (NESTEROV,
1983) a modification to the momentum algorithm. The Nesterov momentum algorithm
consists in calculating the gradient not at the current position θθθn, but in what would be the
future position if only the momentum part of (85) was considered.

Nesterov’s algorithm uses the same weight update of (84), but the velocity update is
modified to

vvvn+1 = βvvvn − α
∂J(θθθn + βvvvn)

∂θθθn
. (86)

The rationale of why (86) works is that the next parameter θθθn will be at least θθθn+βvvvn,
thus, using this information to calculate the gradient gives some sort of correction to the
gradient calculation of the standard momentum.

3.2.5.3 RMSProp

The traditional momentum based optimization techniques such as ones from subsec-
tions 3.2.5.1 and 3.2.5.2 uses the idea of increasing the consistency of the direction in
which the gradient moves by adding a momentum term in its update rule. This can also
be achieved by forcing some kind of consistency on each element of the weight update,
which translates to having a per parameter learning rate.

The RMSProp algorithm is a slight modification to the adaptative gradient algorithm,
also known as AdaGrad, presented in (DUCHI; HAZAN; SINGER, 2011). RMSProp
uses the exponential averaging of the square magnitude of the partial derivative of the
cost function with respect to the parameter while AdaGrad uses the aggregated square
magnitude. This modification was first presented informally in an online class. The main
effect is that the parameter learning rate does not grow unbounded for a constant local
derivative.

The i-th parameter learning rate of the n+ 1 update of the RMSProp is, according to
(CHARU, 2018), given by

Ai,n+1 = β2Ai,n + (1− β2)

Å
∂J(θθθn)

∂θi,n

ã2
,∀i ∈ Nnθ , n ∈ N. (87)

with Ai,0 = 0.

The parameter update is then calculated with the gradient normalized by the square
root of the per parameter learning rate, i.e.,

θi,n+1 = θi,n −
α√
Ai,n

∂J(θθθn)

∂θi,n
,∀i ∈ Nnθ , n ∈ N. (88)

50

3.2.5.4 ADAM

The adaptative moments estimation (ADAM) algorithm, presented in (KINGMA; BA,
2014), can be seen as a combination of both RMSProp and Momentum, with the addition
of solving the bias given by initializing the velocity and per parameter learning rate at
zero.

The algorithm first calculates the velocity at iteration n+ 1 as

vvvn+1 = β1vvvn + (1− β1)
∂J(θθθ)

∂θθθ
, (89)

where vvvn+1 =
î
v0,n+1 v1,n+1 · · · vnθ,n+1

óT
then the per parameter learning rate is

calculated with (87).

The bias due to initializing both vvv0 and Ai,0 to zero is remediated using the following
recurrence equation for the velocity

v̂vvn+1 = vvvn
1

1− βn1
,∀n > 0; (90)

and for the per parameter learning rate

Âi,n+1 =
Âi,n

1− βn2
,∀i ∈ Nnθ , n ∈ N. (91)

The parameter update is then given by

θi,n+1 = θi,n +
α»
Âi,n

v̂i,n,∀i ∈ Nnθ , n ∈ N. (92)

3.2.5.5 NADAM

Nesterov Adaptative Moments Estimation (NADAM) was presented by (DOZAT,
2015), and it basically introduced the Nesterov Momentum to ADAM. This translates
to changing the velocity update of (89), to

vvvn+1 = β1vvvn + (1− β1)
∂J(θθθn + β1vvvn)

∂θθθn
, (93)

and the per parameter learning rate of (87), to

Ai,n+1 = β2Ai,n + (1− β2)

Å
∂J(θθθn + β1vvvn)

∂θi,n

ã2
,∀i ∈ Nnθ , n ∈ N. (94)

with Ai,0 = 0.

All the other updates remain the same as in ADAM. NADAM delivers better mod-
els than ADAM, RMSProp and pure SGD, for the problem in (DOZAT, 2015) and is
considered one of the best algorithms for training DNNs (GÉRON, 2022).

51

3.2.6 Backpropagation

As seen, to train a DNN, usually some extension of the SGD algorithm is used. Many
such extensions were discussed in section 3.2.5 and all of them require the calculation of
the cost function’s gradient with respect to the parameters of the DNN.

Since the DNN is compactly represented as a repeated composition of functions, a
recurrence over the layers, to calculate the gradients w.r.t the parameters one needs to
recursively apply the chain rule of differentiation, which if not done carefully, can make
the gradient calculation become computationally prohibitive. In fact, if the algorithm to
calculate the gradient of a DNN is naive, i.e., it blindly selects a weight and calculates the
gradient of the cost function w.r.t that weight, its computational complexity is O(2n) for
a DNN with n nodes (GOODFELLOW; BENGIO; COURVILLE, 2016).

However, the effective evaluation of the gradients can be done using dynamical pro-
gramming, its use to calculate derivatives over computational graphs was rediscovered
many times by independent researches, but it was first published by Seppo Linnainmaa in
his Phd thesis (GRIEWANK, 2012; LINNAINMAA, 1976, 1970) and deemed automatic
differentiation, where it was applied to general acyclic graphs. Its application in DNNs
to calculate gradients was popularized by (RUMELHART; HINTON; WILLIAMS, 1986)
and deemed backpropragation (BP) in this context.

The backpropragation algorithm main idea is to note that to calculate the gradients
w.r.t two close parameters in the DNN graph many of the calculations are repeated due to
its compositional structure. Thus, to save computational time, one could save the interme-
diate calculations and just reuse them when needed, an approach known as memoisation
and that makes gradient calculations have a computational cost of at most O(n2) (GOOD-
FELLOW; BENGIO; COURVILLE, 2016), greatly reducing the computational cost of the
gradient calculation when compared with the naive approach.

The backpropagation algorithm works by applying the chain rule in a specific or-
der, starting in the output node and going progressively deeper, up to the first layer, ag-
gregating the derivatives, this backwards calculation is the reason behind the algorithm
name. A more in-depth discussion of the backpropagation algorithm is presented in
(CHARU, 2018; RUMELHART; HINTON; WILLIAMS, 1986; GOODFELLOW; BEN-
GIO; COURVILLE, 2016).

3.2.7 Recurrent Neural Networks

Although a deep neural network is powerful enough to represent any possible function,
for some problems this comes at the cost of a prohibitively big number of parameters.
There are techniques to alleviate and reduce the number of parameters that are simple to
implement and are effective, one of such techniques is trading layer width for number of
layers, i.e., making the DNN deeper.

This option solves the problem of a big number of parameters but at the cost of training

52

time, which can also often be prohibitively. Another option is to share parameters between
two sections of the neural network that should have similar properties, this is the case with
encoder-decoder architectures (GOODFELLOW; BENGIO; COURVILLE, 2016).

For sequential data such as data generated with dynamical systems, text or any system
that generates data that can be interpreted as a sequence, a very successful special archi-
tecture is known as Recurrent Neural Networks, which basically introduces cycles in the
DNN graph. This means that each neuron computation is not static anymore but rather a
recurrence, the origin of the Recurrent in the name of such architectures.

A useful tool in interpreting such architectures is to consider that every sequence is
a sequence that varies in time, which allows us to treat RNNs as any other discrete time
system and simplifies the notation, a simple Recurrent Neural Networks (RNN) is shown
in Figure 11.

Figure 11 – Recurrent Neural Network.

h
(1)
1 (t− 1)

q−1q−1

w
(1)
q,1,1w
(1)
q,1,1

w
(1)
q,2,1w
(1)
q,2,1

h
(1)
2 (t− 1)

q−1q−1

w
(1)
q,1,2w
(1)
q,1,2

w
(1)
q,2,2w
(1)
q,2,2

x1(t)

x2(t)

h
(1)
1 (t)w

(1)
1,1w
(1)
1,1

w
(1)
1,2w
(1)
1,2

h
(1)
2 (t)

w
(1)
2,1w
(1)
2,1

w
(1)
2,2w
(1)
2,2

yyy1(t)w
(2)
1,1w
(2)
1,1

w
(2)
1,2w
(2)
1,2

yyy2(t)

w
(2)
2,1w
(2)
2,1

w
(2)
2,2w
(2)
2,2

Input
layer

Hidden layer Output
layer

Source: author

As shown in Figure 11, each input and output of the neural network, including the
outputs of the recurrent hidden layers, are represented as a function of time, this is because
RNNs operate in a sequence. Also, the recurrent hidden neurons have as inputs the outputs

53

of the previous hidden layer9 and its own output in the last time step, both parametrized
by its sets of weights, w(1)

i,j for the feed-forward inputs and w(1)
q,i,j for the feed-back. In this

fashion, the output of the i-th hidden layer at time t, is, in the matrix notation of (60),
given by,

hhh(i)(t) = σ(i)(W (i)hhh(i−1)(t) +W (i)
q hhh(i)(t− 1) + bbb(i)) = hhh(i)(hhh(i)(t− 1),hhh(i−1)(t)). (95)

where hhh(0)(t) = xxx(t), W (i) ∈ Rpi−1×pi and W (i)
q ∈ Rpi×pi .

Another way to graphically represent a RNN is to use the matrix representation of
each layer output, as given in (95), and done in Figure 12.

Figure 12 – Deep Recurrent Neural Network in Vector Format

x1(t)

x2(t)

xn(t)

...
hhh(1)(t)

q−1q−1

hhh(2)(t)

q−1q−1

hhh(3)(t)

q−1q−1

yyy1(t)

yyy2(t)

yyym(t)

...

Input
layer Hidden layer

Output
layer

Source: author

Figure 12 shows a RNN of the same type as the one shown in Figure 11, although
with two more hidden layers and in a much compacter form than before.

In simple RNNs, as is the case of the one shown in Figure 11, the output of each
hidden layer is only a function of its output in a previous time and the output of the
previous hidden layer in the actual time, but this need not be the case. In fact, the most
successful kinds of RNNs have outputs that differ from its internal states, as is the case
with the Long Short Therm Memory (LSTM) cell and with the Gated Recurrent Unit
(GRU).

Recurrent networks need to be trained using an extension of the Backpropagation
algorithm, known as Backpropagation Through Time (BPTT), this is because the standard
backpropagation algorithm cannot handle cycles in its graph. What the BPPT algorithm
does is to "unroll" the graph in time by calculating the recurrence, once that is done the
resulting equation is not a recurrence anymore and normal BP can be applied (CHARU,

9In this case, where there is only a single hidden layer, the previous hidden layer is the input layer.

54

2018; GOODFELLOW; BENGIO; COURVILLE, 2016; GÉRON, 2022). Unrolling in
time can be better understood with the following simple example.

Example 3.2.2 (Unrolled RNN). Considering a RNN that has one input signal with five

input samples, i.e., the input signal x(t) enters the RNN as

xxx(t) =
î
x(t− 4) x(t− 3) · · · x(t)

óT
, (96)

and the RNN uses this to predict the next four samples of the output signal y(t), i.e., the

output predicted by the RNN is

yyy(t) =
î
y(t+ 1) y(t+ 2) · · · y(t+ 4)

óT
. (97)

The RNN architecture for this setup consists of two hidden layers with one input node

and one output node, the RNN representation is shown in Figure 13.

Figure 13 – Deep Recurrent Neural Network in Vector Format

x(t) h(1)(t)

q−1q−1

h(2)(t)

q−1q−1

yyy(t)

Input
layer

Hidden layers

Output
layer

Source: author

The RNN in Figure 13 has, in every node, an implicit associated recurrence equation

in time, as in (95). E.g., the output of the second hidden node in the third sample is given

by

h(2)(t− 2) = h(2)(h(1)(t− 2), h(2)(t− 3)), (98)

which depends on the output of the previous layer on the present and the output of itself

in the previous time step. Thus, the RNN graph has, as shown in Figure 11, cycles, which

makes the application of the backpropagation algorithm impossible.

Since the cycles in RNN’s graphs are generated by recurrences in time, it is actually

possible and simple to get rid of them by applying an operation that is usually known as

unrolling. Unrolling an RNN just means to evaluate the recurrence up to the first input,

for the case of (98), ignoring the input of the previous layer10, this amounts to

h(2)(t− 2) = h(2) ◦ h(2)(t− 3) ◦ h(2)(t− 4) ◦ h(2)(t− 5), (99)

where the initial state is h(2)1 (t− 5) = 0.

Noticeable, equation (99) is not a recurrence equation anymore, thus, applying the re-

currence up to the point where it reaches its initial states results in function that, although
10For notational clarity.

55

very complex, does not depend on some unknown past state. Unrolling all recurrent lay-

ers results in a graph representation similar to the normal DNN graph, Figure 14 shows

the unrolled RNN of Figure 13.

Figure 14 – Deep Recurrent Neural Network in Vector Format

x(t)x(t− 1)x(t− 2)x(t− 3)x(t− 4)

h(1)(t)h(1)(t− 1)h(1)(t− 2)h(1)(t− 3)h(1)(t− 4)

h(2)(t)h(2)(t− 1)h(2)(t− 2)h(2)(t− 3)h(2)(t− 4)

yyy(t)yyy(t− 1)yyy(t− 2)yyy(t− 3)yyy(t− 4)

Source: author

The major effect of unrolling the RNN graph is that it makes it a feed-forward graph,

as shown in Figure 14, where the normal backpropagation algorithm can be applied on.

Hence, BPPT amounts to just unrolling the RNN graph and applying normal BPP.

It should be noted that the process of unrolling an RNN is done automatically by
many packages, specially by package used in this work to create and train DNNs: the
TensorFlow python package (GÉRON, 2022). This make implementing RNNs just as
simple as implementing RNNs.

Also, very importantly, as shown in the 3.2.2, the initial state is assumed to be zero,
although this common practice for many problems, it does not need to be always the case
(GÉRON, 2022; GOODFELLOW; BENGIO; COURVILLE, 2016; CHARU, 2018). In
this work, all recurrent networks have zeroed initial states, even when in application.

Another interesting result the Example 3.2.2 shows is that although the RNN shown in
Figure 14 has output predictions at each input time step, it is possible to see the RNN as a
function that maps from xxx(t) to yyy(t) by just ignoring all the other output vectors. Thus, it
would be possible to create a dense feed-forward network to do the same mapping, which
would, in comparison with the RNN shown in Figure 14, have much more connections
and, hence, parameters. Also, the hidden nodes h(1) and h(2) appear multiple times in the
graph, this means that the unrolled graph not only have fewer connections than its dense

56

counterpart would, but also many of the connections use the same parameters, that is one
of the main advantages of using RNNs.

It is interesting to notice that the true system that drove x(t) to yyy(t) is assumed to
be the same system that drove x(t + 1) to yyy(t + 1), 11 and since the RNN explicitly
enforces this, the parametrization starts closer to the true system than an alternative dense
feed-forward representation would.

3.2.7.1 Sequence-to-vector

The RNN shown in Figures 14 is an input sequence type RNN, which means that at
each time step, one sample is provided to the RNN. It is also possible to have an input
vector type RNN, in that case, the same input sample, say x(t), would be provided to the
RNN in each time step, which is an approach often used in language models (GÉRON,
2022).

A similar division is made for the output type of the RNN, which can be either of
sequence or vector type. All input sequence type RNNs work as the unrolled graph of
Figure 14 shows, i.e., after each input sample, an output with as many samples as defined
in the RNN architecture is produced. The difference between sequence-to-vector (S2V)
from sequence-to-sequence (S2S) model types is that in the first model type, although
the model produces one output at each time step, only the output of the last time step is
used to calculate the loss function and, hence, to update the weights in training (GÉRON,
2022).

To train a S2V model, the data contained in the dataset needs to be divided, since a
RNN operates on sequences, the model definition does not directly determine the input
size, and the same model can be applied on a sequence of, say, 10 samples and 20 samples.
That would not be the case if the model was a DNN, since it operates in a predefined
number of input samples.

To train the model, however, the data in the dataset is divided in a fixed number of
input samples ni and output samples no, and a dataset withN samples can be transformed,
by windowing (GÉRON, 2022), into a dataset with N − (ni+no)+1 samples in it. Thus,
for an input vector xxx(t) ∈ Rnx , output vector yyy(t) ∈ Rny and batch size Nb, the input
dataset is a tensor X ∈ RNb×ni×nx , with elements Xi,j,k, the i-th element of the dataset’s
input is, thus, given by

Xi(t) =

xxxT (t− (ni − 1))

xxxT (t− (ni − 2))
...

xxxT (t− 1)

xxxT (t)

; (100)

where each t from the sampled data generates an input example.
11Which is as valid as the assumption 2.1.1.

57

In training the model reads each j-th dimension in sequence, thus resulting in a similar
training procedure as with the feed-forward model type, where a whole batch of data can
be processed at once and in parallel. Since usually Nb << N − (ni + no) + 1, there are
(N − (ni + no) + 1)/Nb batches of inputs X , with the last one, if it is the case, with the
rest of the data12, i.e., assuming that the last batch has Nbl samples, with Nbl < Nb, the
last input tensor X ∈ RNbl×ni×nz .

Although the model makes a prediction after every input sample, only the last one is
used to calculate the training cost function, hence, the dataset’s output is a tensor Y ∈
RNb×no×ny , with elements Yi,j,k, the i-th element of the dataset’s input is, thus, given by

Yi(t) =

yyyT (t+ 1)

yyyT (t+ 2))
...

yyyT (t+ (no − 1)

yyyT (t+ no)

; (101)

where each t from the sampled data generates an output example.

3.2.7.2 Sequence-to-sequence

In the S2S model type, the output of all time step, not only the last one, is used to
train the model, even to in usage only the last prediction is used. This means that the loss
function is calculated after each time step along with the gradients and weight update.
This might seem quite counterproductive, but this approach results in many more weight
updates that generalize better and converges faster, thus, using a sequence-to-sequence
model results in a model that trains faster and has better generalization to the test set
(GÉRON, 2022).

Since both S2V an S2S model types have a sequence input, the input dataset to train
the model does not change. The output, however, does change, for the S2S model type
the dataset’s output is a tensor Y ∈ RNb×ni×no×ny with elements Yi,j,k,l, one Yi(t) of (101)
for each input sample13. The (i, j)-th element is the output of the i-th batch sample for
the j-th input, and is given by

Yi,j(t) =

yyyT (t− (ni − j) + 1)

yyyT (t− (ni − j) + 2)
...

yyyT (t− (ni − j) + no − 1)

yyyT (t− (ni − j) + no)

; (102)

12Since the number of batches given by the formula is usually not an integer, the last input tensor has the
rest of the samples.

13Instead of just one for the last input sample in the S2V case.

58

where, once again, each t from the sampled data generates an output example.
Equation (102) shows how each output of the dataset is transformed in training, the

next example shows this transformation for a toy dataset, which, hopefully, better depicts
the discussed transformations.

Example 3.2.3 (Sequence-to-sequence dataset). To clarify the dataset’s transformations

alone, consider the simplest possible setup: the input and output vector are one dimen-

sional, i.e., nx = ny = 1; there is only a single example per batch, i.e., Nb = 1; the input

and output samples are ni = no = 2.

The input and output data are the same, implicitly this means that the model is given

the past two values of some measured signal and is to predict the next two values of the

same signal. The input-output signal is

X = Y =
î
1 2 3 4 5 6 7 8

óT
. (103)

In the following, to better show the dataset’s input and output tensors, all dimensions

with size 1 will be collapsed.

The input dataset is formed as defined in (100), which can be seen as sliding a window

of size 2 in the data, the dataset’s input, a rank 2 tensor in this case, is

X =

1 2

2 3

3 4

4 5

5 6

; (104)

which would be the same for both S2V and S2S model types.

The output vector, a rank 3 tensor in this case, is shown sliced in the batch dimension,

i.e., each Yi element at time.

Y1 =

[
2 3

3 4

]
Y2 =

[
3 4

4 5

]
Y3 =

[
4 5

5 6

]
Y4 =

[
5 6

6 7

]
Y5 =

[
6 7

7 8

]
(105)

In this example, although in a very simple setup, it is possible to see that the for each

input sample, i.e., each line in X , of every example in the dataset, there is an associated

output. For the more intuitive S2V model type, the output dataset would be just the second

row of each Yi 2-tensor. Thus showing that, in this simple case where ni = no = 2,

the S2S model type has already double the amount of gradient calculations, and, more

importantly, weight updates.

3.2.7.3 LSTM

Although the RNN was presented with a recurrent layer that has states equaling out-
puts and that calculate each new output/state via (95), this need not be the case. In fact, the

59

recurrent node can have any number of internal states, in those more complex cases the re-
current node is more often referred to as cell, an abbreviation to memory cell, technically,
however, all recurrent neurons are cells.

A cell can be seen as a form of memory, since it contains information of past in-
put/output values encoded in its states. When dealing with long sequences, the simple
RNN of (95) have a tendency to forget the first inputs since the next state only explicitly
depends on the past state.

One cell that tries to fight this problem is the Long Short Term Memory (LSTM),
which is constructed to have, in essence, an extra state vector that holds the most relevant
features of the input sequence for longer. In practice this is done using four fully con-
nected layers inside each cell, thus, the i-th LSTM layer, formed with pi LSTM cells, has,
each:

• one layer that controls what to store in the long-term state ccc(i)(t) ∈ Rpi;

• one that controls what to erase from ccc(i)(t− 1);

• one that analyses the short-term memory state hhh(i)(t) ∈ Rpi and input hhh(i−1)(t);

• one that controls the output, which, in this case, is the short-term hidden state
hhh(i)(t);

A more complete evaluation of the parts of this cell is provided in the original paper
(HOCHREITER; SCHMIDHUBER, 1997) and in (GÉRON, 2022; CHARU, 2018), the
calculations that a layer of LSTM cells performs at each time step are given by

iii(i)(t) = σsgm(W
(i)
i hhh(i−1)(t) +W

(i)
qi hhh

(i)(t− 1) + bbb
(i)
i)

fff (i)(t) = σsgm(W
(i)
f hhh(i−1)(t) +W

(i)
qf hhh

(i)(t− 1) + bbb
(i)
f)

ooo(i)(t) = σsgm(W
(i)
o hhh(i−1)(t) +W (i)

qo hhh
(i)(t− 1) + bbb(i)o)

ggg(i)(t) = σtanh(W
(i)
g hhh(i−1)(t) +W (i)

qg hhh
(i)(t− 1) + bbb(i)g)

ccc(i)(t) = fff (i)(t)⊗ ccc(i)(t− 1) + iii(i)(t)⊗ ggg(i)(t)

hhh(i)(t) = ooo(i)(t)⊗ σtanh(ccc
(i)(t))

(106)

where it is assumed that hhh(0)(t) = xxx(t), the bias vectors, i.e., bbb(i)i , bbb(i)f , bbb(i)o and bbb(i)g , are
all ∈ Rpi . The short-term state, which is the output of the cell, is ∈ Rpi and the weight
matrices have dimensions that match the biases dimensions and make the equations valid,
e.g., W (i)

i ∈ Rpi−1×pi . Also, in (106), ⊗ is the hadamard product of two vector, i.e., for
vectors aaa, bbb ∈ Rp the hadamard product is ccc = aaa ⊗ bbb and has the i-th element given by
ci = aibi.

In (106) the calculations are shown for a whole layer, thus the signals on the right
hand side (RHS) belongs to Rpi , for a single cell, the signal i(i)(t) is the input gate signal,

60

f (i)(t) is the forget gate signal and o(i)(t) is the output gate signal. Each one of those
signals play a role in controlling the long and short-term states.

The LSTM equations also show that each LSTM layer has significantly more pa-
rameters that a simple RNN layer would, from (95) the weight matrices W ∈ Rpi×pi

Wq ∈ Rpi−1×pi which gives a total of pi(pi + pi−1) parameters per layer, while the LSTM
has 4pi(pi+pi−1), which can more easily be seen by noting that each of the signals i(i)(t),
f (i)(t), o(i)(t) and g(i)(t) can be considered a separate simple RNN.

LSTMs also give better characteristics on training since they are less prone to the
vanishing and exploding gradients, a common problem in simple RNNs (GÉRON, 2022;
CHARU, 2018). This, together with the capability of learning longer patterns in data
more easily, makes the LSTMs a powerful tool to model the behavior of long sequences
in general and is specially useful for the purpose of representing a controller map C.

3.2.7.4 GRU

The Gated Recurrent Unit (GRU) was introduced by (CHO et al., 2014) and can be
seen as a simplification of the LSTM cell, where both state vectors are merged in a single
state vector hhh(t) and where only one gate controller signal zzz(t) controls the input and
forget properties. The calculations that a GRU layer perform are

zzz(i)(t) = σsgm(W
(i)
z hhh(i−1)(t) +W (i)

qz hhh
(i)(t− 1) + bbb(i)z);

rrr(i)(t) = σsgm(W
(i)
r hhh(i−1)(t) +W (i)

qr hhh
(i)(t− 1) + bbb(i)r);

ggg(i)(t) = σtanh(W
(i)
g hhh(i−1)(t) +W (i)

qg (rrr
(i)(t)⊗ hhh(i)(t− 1)) + bbb(i)g);

hhh(i)(t) = zzz(i)(t)⊗ hhh(i)(t− 1) + (1− zzz(i)(t))⊗ ggg(i)(t);

(107)

where it is assumed that hhh(0)(t) = xxx(t), the matrices and vectors sizes works as in the
LSTM cell.

The GRU have similar performance to the LSTM cell (GREFF et al., 2016), all while
using 3/4 of the total number of parameter14, this gives a model with fewer parameters
and that needs less data to generalize well.

3.3 Regularization

Complex models have the capability to fit a great number of functions of the most
diverse classes, this is very powerful and allows to easily represent problems where the
true generating function is unknown. This power, however, comes with a downside, since
the data is often contaminated by noise and datasets are of finite size, a very powerful
model can be induced to learn the noise realization as if it was part of the true generating
function, this is often known as over-fit. Since the noise realization is dataset dependent,

14Considering a RNN with the same number of cells and layers.

61

thus, a model that over-fits some dataset A is a model that yields a smaller cost function
on A than on some other dataset B.

It should be noted that this noise contamination in the dataset is not necessarily orig-
inated just from ν(t) on (1), it can also be originated by a dataset that does not explore
all the input space in a sufficient manner. To see this, suppose that the dataset input x and
output y is given by the true generating function as y = f(x) with no noise, assume also
that 99% of the input values of the dataset are in range x ∈ [0, 1], and that 1% of the input
values are in the range x ∈ [2, 3], with a f(x) that has a fairly distinct behavior in those
two regions. Without knowing f(x) and looking only to pairs (x, y), one could think that
the different behavior of this 1% of data is actually originated from noise, while in reality
is just a region of the input space that is not sufficiently explored.

There are two main approaches to deal with over-fitting, increasing the dataset and
restricting the model complexity. On the first approach, over-fitting is prevented because
the noise is more easily distinguished from the uncontaminated data. On the second ap-
proach, the model itself is made just powerful enough to learn the true generating statistics
while not being so powerful that is allowed to memorize the noise realization.

Since acquiring more data tends to be expensive or even impossible, ideally, one of
the best approaches is to have a model that is just powerful enough to learn the true
generating statistics. This ideal size model would then not only not over-fit the data but
would also be faster to train and need fewer data to do so. The problem with this approach
is that one has usually little knowledge of the true generating statistics and, hence, of the
needed complexity of the model. Finding this ideal model size is, thus, a problem and
one solution is to manually increase the model size while monitoring the train and test set
cost functions, the ideal model is then the smaller model that makes the cost function on
the train and test set evaluate to close values.

Regularization is any process or strategy that automatically induces a model to be
simpler, have less complexity or simply that produces a model with a smaller test error
(GOODFELLOW; BENGIO; COURVILLE, 2016). There are many ways to regularize a
model, the regularization strategies used in this work will be presented in the following
subsections.

3.3.1 Parameter Regularization

One option to restrict the model capability is to penalize the model’s parameters, this
is done by modifying the cost function that is minimized. Assuming that the cost function
of interest is J(θθθ,X, Y), where θθθ ∈ Rnθ is the parameter vector, X is the input values
matrix and Y is the output, the new modified cost function is given by

Jp(θθθ,X, Y) = J(θθθ,X, Y) + αrP (θθθ); (108)

62

where the penalizing function P (θθθ) : Rnθ → R is some measure of the parameters and αr
is the hyperparameter that weights the penalization.

This penalizing function is usually either the L2 norm of the parameters or the L1

norm, but it can be any metric. In this work only L2 and L1 penalizations will be used
and presented since they’re the ones that offer the properties that are of most interest.

3.3.1.1 L2 Regularization

In the L2 regularization the penalizing function is given by the squared L2 norm of the
vector, i.e.,

P (θθθ) =
1

2
||θθθ||22 =

1

2
θθθTθθθ. (109)

Applying (109) into (108) and taking the gradient w.r.t θθθ, gives a weight update in the
Stochastic Gradient Descent of

θθθn+1 = (1− αrα)θθθn − α
∂J(θθθn)

∂θθθn
. (110)

Equation (110) shows that the weight update is now modified to also decrease the
weights in an amount that is proportional to the weights.

By analyzing the cost function (108) and (110) it is possible to see that the minimum
of Jp is given by some set of parameters that minimize J while being as small as possi-
ble, this property is shown more clearly by the weight update rule, which shows that the
weights walk on a path that is a compromise between making J and themselves smaller,
this prevents the weights from growing too much to fit spurious patterns on the data as
part of the true generating statistics, thus working as a form of regularization.

3.3.1.2 L1 Regularization

L1 regularization works the same as L2 but uses, instead, the L1 norm of the vector,
i.e.,

P (θθθ) = ||θθθ||1 =
nθ∑

i=1

|θi| . (111)

Applying (111) into (108) and taking the gradient w.r.t θθθ gives a weight update for the
SGD of

θθθn+1 = αrsign(θθθn)− α
∂J(θθθn)

∂θθθn
. (112)

where the signal15 function sign is applied element-wise.
With the L1 penalization, the weight update rule of (112) is, as with L2, in the di-

rection that minimizes J and, unlike L2, happens in the weights’ direction (positive or
negative) always with the same value, regardless of the weight’s values, this promotes
non-important weights not only to be small but to be exactly zero. It is interesting to
notice that L2 regularization does not zero the unimportant weights because the smaller a

15sign(a) is 1 if a > 0, −1 if a < 0 and 0 otherwise.

63

weight is, the less it will be pushed to zero, which is a consequence of the weight update
penalization being proportional to the weight. Because of this property, L1 regularization
can be seen as an automatic feature selection mechanism.

3.3.1.3 Parameter Regularization in RNNs

It is possible to divide the parameters of a RNN layer in three sets, input, recurrent
and bias weights. The input weights are those that multiply the output from the previous
layer16, while the recurrent are those who multiply the output of the actual layer in the
previous time step. In this work, all recurrent matrices are indicated with a subscript q,
e.g., in a LSTM layer, the recurrent weight matrix of the input gate signal is Wqi.

Since in RNNs those different parameters have very different roles, they also often
have very different sizes. Thus, a parameter regularization that penalizes input and recur-
rent weights with the same intensity might penalize one much more than the other. For
this reason, in actual implementation, the parameter regularization of (108) is modified to

Jp(θθθ,X, Y) = J(θθθ,X, Y) + αriPi(θθθi) + αrrPr(θθθr) + αrbPb(θθθb); (113)

where θθθ =
î
θθθTi θθθTr θθθTb

óT
, and θθθi is the input weights vector, θθθr is the recurrent weight

vector and θθθb is the bias weight vector, with obvious names for the penalization parameters
αr[·] and penalizing functions.

This approach allows controlling more precisely the penalization strength in each set
of weights and often gives better results.

3.3.2 Gaussian Noise Contamination

The work of (SIETSMA; DOW, 1991) indicate that injecting Gaussian noise with
zero mean on the input of the DNN during training greatly helps them to generalize better.
This was latter proved to be equivalent to adding an extra term to the error function by
(BISHOP, 1995).

To inject noise in the inputs, before the n-th weight update, the input matrix X ∈
RN×nx is summed with the matrix Ψ . With the element of the i-th row and j-th column
ψi,j given by

ψi,j ∼ N(0, σ2
ψ), (114)

where the standard deviation σψ is a hyper-parameter to be selected. It should be noted
that the noise here is applied only in the input of the model, and not at every layer.

This form of regularization can be seen as an artificial dataset augmentation (GOOD-
FELLOW; BENGIO; COURVILLE, 2016). The reasoning is that, assuming a small
enough σψ, an input xxxσ, the contaminated version of xxx whose output is yyy, is close to
its uncontaminated counterpart and should have an output that is also close to yyy. This

16Which is the input of the actual layer.

64

approach make so that virtually every data presented to the model during training is dif-
ferent, which augments the dataset proportionally to the number of weight updates.

This form of regularization also helps the model to be less sensitive to noise as (SI-
ETSMA; DOW, 1991) suggests, making for a form of regularization that is very interest-
ing for models to be used in noisy environments, as is the case with C. And, as the results
of this work indicates, is very effective, helping both training and in reducing the model’s
noise sensitivity.

The idea of Gaussian noise contamination can be extended to the inputs of every layer
in the model, and also to the parameters itself, as shown in (GOODFELLOW; BENGIO;
COURVILLE, 2016), which shows also another famous form of regularization known as
Dropout, which can be seen as a form of constructing a new input via multiplying them
by noise.

3.3.3 Regularization in VRFT context

Regularization is also studied in the context of the VRFT for linearly parametrized
controllers, as (FORMENTIN; KARIMI, 2014) shows, L2 regularization improves the
statistical performance significantly when the data is corrupted by noise, namely, it re-
duces the variance when the VRFT problem is solved with instrumental variables, the
same result is extended to multi-input multi-output (MIMO) systems by (BOEIRA; ECK-
HARD, 2019), which also had better closed loop performance when using L2 regulariza-
tion.

In the work of (FORMENTIN; KARIMI, 2014), the selection of penalizing factors is
done using an automatic procedure that does not allow including prior knowledge of the
system onto the penalizing factors. The work of (RALLO et al., 2016) expands on L2 reg-
ularization when there is available knowledge of the plant model, the proposed approach
gives better performance than the L2 regularization of (FORMENTIN; KARIMI, 2014)
when there is some knowledge about the system to be controlled.

In (PILLONETTO et al., 2014), a broader evaluation of regularization in the system
identification area is made, the work shows that regularization eases the problem of se-
lecting a model complexity and is beneficial as long as the penalizing factors are chosen
carefully.

Overall, the effect of introducing regularization techniques into the linear VRFT is
of trading more bias for less variance, but since the true objective is not to produce an
unbiased estimate of the parameters but to minimize J , regularization produces a closed
loop controller that is statistically better with respect to the model reference cost function.
This shows that L2 regularization technics are a valuable tool in VRFT, and indicates that
other forms of regularization, as the ones presented in this section, can be helpful to the
problem’s solution even in the nonlinear case, this hypothesis is corroborated with the
case studies results, which all show better performance with regularization.

65

4 CASE STUDIES

In this chapter the VRFT method will be applied to two dynamical systems, a simple
pendulum1 and a direct current (DC) motor, to show the resulting controller, the main
problems and the results.

4.1 Simple Pendulum

The simple pendulum is a common and intuitive dynamical system which is often
used as test to control design methods. For this reason the VRFT method will be applied
to this system to show some of the properties of the method in this more intuitive system.

Although the system dynamics will not be used to derive C, it is important to precisely
describe it, since this is what will generate the dataset and is where the control map will
be applied. The angular position x1 and velocity x2 are given by

ẋ1 = x2

ẋ2 = −b1 sin(x1)− b2x2 + u

y = x1 + ν(t)

(115)

where b1 is a constant that depends on the pendulum’s moment of inertia, its mass and
the gravitational constant, b2 is the rotational friction, u is a torque applied to control the
pendulum and the output y is the angular position contaminated by ν(t) ∼ N(0, σ2) with
σ = 2.31 · 10−4 . In this experiment, b1 = 1 and b2 = 0.1.

The reference model choice need to be made reasonably, because even without re-
stricting bounds in the control, the physical system has limitations in the trajectories it
can go through. Thus, if the designer chooses a reference model that is too far away from
what can be achieved by the system, no controller class will make JV (θθθ) = 0 and the
minimum of JV (θθθ) might give a controller that has little to do with Cr.

When the system to be controlled is continuous, as is often the case, it makes more
sense to define the reference as a continuous system as well, this decouples the choice of
the reference model and the sampling period.

1A rod with mass fixed on a pin that allows rotation.

66

Choosing an adequate reference model requires some knowledge on the system’s be-
havior. One could, of course, use the dynamics of (115) to determine that, but, in a realis-
tic application, one would not have a precise model of the system, if any at all. Thus, an
alternative that gives some information on the general characteristics of the system is to
apply a step input and watch its response. The response of the system (115) to a step of
0.3 is presented in Figure 15.

Figure 15 – Step response of (115).

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

t [s]

x
1
[r
a
d
]

Source: author

From the Figure 15 one can see that the system has a strong oscillatory response, with
an overshoot almost as big as the input itself. Also, the settling time is observed to be
in the neighborhood of 70 s. With this information, seems reasonable to expect that the
linearized system is at least second order.

4.1.1 Case 1

4.1.1.1 Reference Model

If one wants to have a closed loop system without overshoot and with about half the
settling time of the open loop system, is sensible to define the continuous time Reference
Model as the one with transfer function

Sr =
0.33

0.4

s+ 0.4

(s+ 0.3)3
, (116)

with step response in the Figure 16.

The intuition on the choice of the reference model is that it accomplishes the goal of
no overshoot with a unitary steady state gain while preserving some of the step response
shape and with a settling time that, although smaller, is not too far away from the system’s
natural settling time.

67

Figure 16 – Step response of (116).

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

t [s]

x
1
[r
a
d
]

Source: author

There is another feature of the Reference Model, it has zeroes close to zero, this is
important to mind because the virtual reference is calculated from the inverse of Sr, thus,
small zeroes will produce small poles in the inverted system, which helps to attenuate the
noise effects in the output, which, in turn, ease the complexity of optimizing JV (θθθ).

4.1.1.2 Experiment

To generate the IO-data required to apply the VRFT method, one needs to consider
which input will be used to excite the system (115). For linear systems one of the most
common signals used for this purpose is the Pseudo Random Binary Sequence (PRBS)
signal, which is basically a sequence of steps where each one has amplitude α and interval
Ti. The PRBS signal is so often used for two main reasons, first, it meets the excitation
persistency requirement, second, it is easy to generate.

For a linear system, the amplitude α is the same for all steps because the local behavior
of the system is also its global behavior. This is not the case for nonlinear systems,
applying a PRBS signal in this case would likely result in gathering data of only a small
portion of the system state space, which would be insufficient to characterize the whole
operational region of the system.

A simple change that can be made to the PRBS signal and that allows the system to
explore more of its state space is to give each step in the sequence its own amplitude αi.
To more precisely represent this signal, let

Ii(t) =
{
1, ∀ t ∈ Ai

0, ∀ t /∈ Ai
(117)

be the indicator function of the time interval Ai = [tAi,a tAi,b) with tAi,a, tAi,b ∈ R and
with interval Ti = tAi,b − tAi,a. With this, the variable amplitude pseudo random binary
sequence signal2 ss(t) is

ss(t) =

nA∑

i=0

αiIi(t), (118)

2Also known as multi-level PRBS.

68

where nA is the number of steps and each amplitude αi and time interval Ti are sampled
from a uniform distribution.

For this problem, the system will run for T = 104 s and the data will be collected with
a sampling time of ∆t = 0.2 s. To properly stimulate the system, a ss(t) with nA = 103,
Ti = 10 s and αi ∼ U(−0.3, 0.3) was chosen, a portion of this signal is presented in
Figure 17.

Figure 17 – Part of the sequence of steps used to excite the system.

0 200 400 600 800 1000

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

t [s]

u
[N

·m
]

Source: author

To obtain the data, the system of (115) is simulated with the control of Figure 17,
since the output of the system is corrupted with a white noise of zero mean and standard
deviation σ = 2.31× 10−4, it has a signal-to-noise ratio of about 103. The noisy output is
shown, partially, in Figure3 18.

Figure 18 – Part of the output of the system.

0 25 50 75 100 125 150 175 200

−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

t [s]

x
1
[r
a
d
]

Source: author

4.1.1.3 Filtered Signals and Final Dataset

To solve this problem, the filter of (39), that depends on Sr, will be used. Its applica-
tion is as simple as applying the filter in the linear case, with no need to apply the filter
in the predicted control or to propagate the derivatives with respect to the parameters, as

3It is hard to see the noise in the Figure, that is because the signal to noise ration is high in this case.

69

is the case with the other two filters. In this fashion, the filtered signals are created by
applying (116) in (39) and calculating an a that gives LD unitary steady state gain. Thus,
uL and eL are

uL = LD(q)u(t); eL = LD(q)e(t); (119)

A comparison between the filtered and unfiltered signals is presented in Figures 19 and
20 .

Figure 19 – Comparison of filtered and non filtered input.

0 20 40 60 80 100

−0.2

−0.1

0.0

0.1

0.2

0.3

t [s]

u
[N

·m
]

Non Filtered
Filtered

Source: author

Figure 20 – Comparison of Filtered Error and Non filtered.

0 20 40 60 80 100

−10

−5

0

5

10

t [s]

e [
·]
[r
a
d
]

Non Filtered
Filtered

Source: author

As shown in Figures 19 and 20, the application of the filter greatly affects the signals
u(t) and e(t), where higher frequencies are attenuated, an effect that is more evident in
e(t). Although the filter wasn’t designed with this specific effect as objective, the filtered
signals have characteristics that seem to better match with the ones of the reference model.

Whether using a polynomial or DNN parametrization, it is necessary, before training
the model, to define the measure map Z . The definition should be made in a way that
eases the problem of finding C. Since the controller needs to give the closed loop system
a unitary steady state gain, the controller as whole, i.e., CZ , must have an integrator on the
error, unless, of course, if the system happens to have one already, but since one can not

70

usually know that in advance4, it is the best practice to include one in the measurement
map. It is also interesting to input the controller with a direct measure to the system output
and the error, a measurement map that accomplishes those requirements is

Z[r(t)qqq0t , eL(t)qqq
0
t , y(t)qqq

0
t] =

y(t)

eL(t)∑τ=t
τ=0 eL(τ)

 , (120)

With this definition it is possible to filter with Z all the data to construct all the signals
that, along with the control signal, will be used to train C. It is interesting to observe that
the integrated error, presented in Figure 21, is much smoother than the virtual error, which
potentially helps to find a simpler map C.

Figure 21 – Integrated Error (filtered).

0 200 400 600 800 1000

−10.0
−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

t [s]

∑
e L

[r
a
d
]

Source: author

To train the controller all that is needed is to construct the database, the input database5

is thus defined as

X =

uL(t0) y(t0) eL(t0) eL(t0)

uL(t1) y(t1) eL(t1) eL(t1) + eL(t0)
...

...
...

...

uL(tN − 1) y(tN − 1) eL(tN − 1) eL(tN − 1) + eL(tN−1)

; (121)

and the output as
Y =

î
uL(t1) uL(t2) · · · uL(tN)

óT
; (122)

It is important to scale each signal in the database to force them to be in the same
range, this is a common approach in machine learning and general optimization (GÉRON,
2022) and it is important because without it, the model will potentially be biased to place
more significance into inputs of greater scale. Also, with DNNs specifically, scaling the
data is important because if a saturating activation function is used, using data that has

4Unless a specific test is made on the system.
5Before the S2S transformation is applied.

71

a big range might result in many neurons being saturated, which effectively reduce their
potential influence in the output.

The database is scaled such that every column is in the range [a b], which is accom-
plished by what is usually known as min-max scaler, the scaled database input is thus
created with

Xi,S = (Xi − min(Xi))
a− b

max(Xi)− min(Xi)
+ b, (123)

where Xi is the i-th column of the database and, in this problem, a = −1 and b = 1. The
same procedure is applied to create the scaled database output.

4.1.1.4 DNN-Controller

With the database created, all that is left to do is to define the DNN architecture. In
this case a more complex architecture than a polynomial basis will be used, in the attempt
to capture more of the controller dynamics, giving a closed loop response that is closer to
the reference model.

The chosen architecture is composed of an input layer of 4 neurons, followed by a
Gaussian Noise layer with σ = 0.1, two GRU layers, each with 64 cells, and a dense out-
put layer with linear activation function and one neuron. This architecture gives a model
with 38465 trainable parameters. The GRU layers have a hyperbolic tangent for the out-
put activation function and a sigmoid for the states. Also, only L1 recurrent regularization
is applied, with αrr = 1. It is interesting to notice that this architecture was chosen after
some experimentation and that using a number of cells smaller than 64 generates con-
trollers with only a slightly worse performance than the one herein presented, all while
using much less parameters. The same applies to the activation functions used and all
other hyper-parameters , the ones here presented are the ones that was found to produce
the best predictors, i.e., they were defined via experimentation.

The input layer has four neurons because that is the number of signals in the database’s
input. Since this is a recurrent model, the input size does not tell the whole story, it is also
necessary to define how many input samples (in time) are provided for each prediction, for
this model, the database is constructed to give the last ten samples of the input database
in order to predict the next control output, i.e., the control at time t, in this case, is given
by

u(t) = C[qqq09zzz(t), u(t)qqq10]. (124)

The model is also chosen to be of type sequence-to-sequence since this improves
convergence and diminishes the training time. For this, the database output is modified
accordingly, as presented in subsection 3.2.7.2. The batch has size Nb = 64, which is
chosen as compromise between training time and the regularization properties of using
small batches. The training set consists of 64% of the whole dataset, the validation set is

72

16% and the test set consists of 20%.
The training is made using a modified loss function that also slightly penalizes the

predicted control, this can be seen as a form of regularization that prevents the predicted
control to be bigger than the actual control, thus forcing the errors to be in the smallest
magnitude side. The modified loss function is

JV m(θθθ) = JV (θθθ) + αu

N∑

t=0

û(t)2, (125)

where, for this problem, the penalization factor αu = 1× 10−3.
The selected optimizer for this problem is the NADAM, with initial learning rate of

1×10−4. The plateau learning rate reducer is utilized in training, it is configured to shrink
the learning rate by 10% after 5 epochs6 with no improvement in the validation set, up
to a minimum learning rate of 1 × 10−6. The model is trained up to the point where 20
epochs have passed with no improvement on the validation set, which helps to prevent
over-fitting.

The final training error, measured on the unscaled signals for a better understanding,
is of JVtrain(θθθ) = 2.42× 10−6 with a test set error of JVtest(θθθ) = 2.19× 10−6, which shows
good generalization of the model in the test set.

4.1.1.5 Analysis

Since the optimization is performed on JV m(θθθ), a modified version of JV (θθθ), having
a small JVtrain(θθθ) and JVtest(θθθ) does not necessarily guarantee a good controller, this is
because in this case, where noise is present and the parametrization is not linear in the
parameters, the value of JV might be a local minimum or, in case of a C(θθθ) with low
representational power, a minimum that although global, still does not make C(θθθ) ≈ Cr.

To evaluate the trained controller performance, the best approach is to close the loop
with the found C(θθθ) and to directly calculate the Model Reference cost function J . To
this end, a simulation is performed using the dynamics of (115), where the control action
is calculated at every ∆t = 0.2 s and applied in the continuous system in a ZOH fashion.
The simulation is performed in python, using the scipy implementation of an explicit
Runge-Kutta method of order 5, presented in (WANNER; HAIRER, 1996).

Using this simulation, Figure 22 shows the response to a step of 0.3 rad.
The step response in Figure 22 has a model reference error of J(θθθ) = 1.13 × 10−4,

measured on all the N = 500 samples of the figure, and J(θθθ) = 2.74× 10−4 if measured
on the first N = 200 samples, i.e., up to t = 40 s.

The control action for this case, up to t = 40 s, is show in Figure 23.
In Figure 23 is possible to confirm that the control action does not try to correct the

faster dynamics of the system, that ultimately makes the closed loop system oscillate

6An epoch represents a full pass over the entire dataset.

73

Figure 22 – Comparison of closed loop system with the Reference Model to a step re-
sponse.

0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

t [s]

x
1
[r
a
d
]

Reference Model
Closed Loop System

Source: author

Figure 23 – Closed loop control action of Figure 22.

0 5 10 15 20 25 30 35 40

0.00

0.05

0.10

0.15

0.20

0.25

0.30

t [s]

u
[N

·m
]

Source: author

around the reference model output. This seems to indicate that the controller C(θθθ) is close
to Cr only in low frequencies. Moreover, this also seems to indicate that C(θθθ) has bigger
prediction errors particularly in this kind of trajectory.

To test this, one can consider that the closed loop response was actually made by the
Reference Model, which allows calculating the virtual reference and hence all the other
necessary inputs to C(θθθ). In this fashion, it is possible to calculate the prediction error in
this specific trajectory, which amounts to JVclosed = 2.06×10−5, an error of 763.84% when
compared with JVtest. It is interesting to notice that this is not, at least in the usual sense, a
case of over-fitting, since, as shown, the test set has a prediction error similar to the train
set. What this indicates is that the entire dataset is not representative of the trajectories of
interest.

This hypothesis will be further investigated later, first, it is also fruitful to analyze the
closed loop system behavior to a more challenging reference. Figure 24 shows the system
and reference model response to a sequence of varying amplitude steps, ramps and second
order reference.

As shown, up to a reference of 0.3 rad, the closed loop system behaves similarly

74

Figure 24 – Comparison of closed loop system with the Reference Model to a more chal-
lenging reference.

0 50 100 150 200 250 300 350 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

t [s]

x
1
[r
a
d
]

Reference
Reference Model
Closed Loop System

Source: author

regardless of to the step amplitude and operating point, showing that, at least in this
range, C cancels out the nonlinearity of the system, making the closed loop behavior
close to linear7, closely following the Reference Model output for the most part.

When the reference is bigger than 0.3 rad, however, the closed loop response starts to
degrade, this is mainly due to fact that the database only contains data with control in the
range of [−0.3, 0.3], thus making C not generalize so well when far away from this range.

Going back to the hypothesis that the database is not representative of the dynamics
in the region of interest: ideally the objective is to identify a controller that is capable of
rendering closed loop responses exactly equal to the response of the Reference Model to
any type of reference. This, however, might be hard to do in practice and, since the closed
loop system will often only follow references of a step type, a good database would be
representative of the Reference Model following such references.

If the system was to be controlled by the ideal controller, it would behave exactly the
same as the reference model, and, in this setup, the ideal controller would map errors to a
control action that the system would, in turn, map to an output. Thus, an ideal dataset DI

would be one that has the same distribution of errors and outputs that the reference model
has when subject to a sequence of varying amplitude steps.

Creating this error-output distribution amounts to simply applying a sequence of steps
of varying amplitudes to the Reference Model and to track the distribution of errors
and outputs. To this end, a sequence of steps ss(t) is created with nA = 200, αi ∼
U(−0.3, 0.3) and Ti = 50 s. This reference and the Reference Model output are shown,
up to t = 400 s, in Figure 25.

The reference in Figure 25 is chosen with Ti = 50 s to give the Reference Model
time to achieve its steady state, that is because the system, when in application, would
be feed by references that also allow the same behavior. Changing the reference would

7As desired, since the Reference model itself is linear.

75

Figure 25 – Reference and Reference Model output for the creation of the ideal dataset.

0 50 100 150 200 250 300 350 400

−0.2

−0.1

0.0

0.1

0.2

0.3

t [s]

x
1
[r
a
d
]

Reference
Reference Model

Source: author

of course change the error-output distribution and thus ideal dataset. This means that the
ideal dataset is only in fact ideal if the final objective is to make the closed loop system
follow references exactly like the one presented.

A good way to see the data distribution is to put the data in a plane e − x1, divide it
in small regions and count how many times a point in the dataset falls into this region,
assigning then a color to each amount creates what is often known as a heatmap, which is
shown in Figure 26 for the ideal dataset DI and experimental dataset DE .

Figure 26 – Ideal and experimental dataset distribution.

0.0 0.5

e [rad]

−0.2

−0.1

0.0

0.1

0.2

x
1

[r
a
d
]

DI

0.0 0.5

e [rad]

DE

0 2000 4000 0 500 1000 1500

Source: author

The DI heatmap of Figure 26 reveals many properties of the ideal dataset, first, the
data is concentrated in regions with small errors, which is to be expected since the refer-
ence changes slow enough for the Reference Model to attain zero error most of the time.
Also, the dataset has regions of bigger errors fairly distributed, those account for times
where bigger changes happen in the reference, something that has a smaller chance due

76

to the uniform distribution of amplitudes in the sequence of steps. Other, perhaps unex-
pected, property of the ideal dataset is that the position is concentrated in regions instead
of being uniformly distributed in the range [−0.3, 0.3], this, however, follows the same
distribution of the reference signal and it is a consequence of the small sample number
nA = 200, used to create the reference signal.

The DE heatmap, partially used to train C(θθθ), is shown in Figure 26, in the same
range used in the DI to a better comparison. It is interesting to calculate the difference
of the heatmaps, to do this all that is needed is to take absolute difference of the number
of samples in each sub-region, and to assign a color that goes from zero to maximum
difference, this creates another form of heatmap, this time, however, the strongest color
represents the higher difference in the datasets, this difference heatmap is shown in Figure
27, where it should be noted that although the ideal dataset is created with the reference
amplitudes αi sampled from a uniform distribution, the set of sampled amplitudes in ss(t)
is not so uniform due to the low number of samples.

Figure 27 – Difference heatmap between ideal and experimental datasets.

−0.25 0.00 0.25 0.50

e [rad]

−0.2

−0.1

0.0

0.1

0.2

x
1

[r
a
d
]

0

1000

2000

3000

4000

Source: author

The difference heatmap, shown in Figure 27, shows that the experimental dataset
does cover most of the areas that the ideal dataset covers, as indicated by the maximum
difference shown in the colored label. Apart from the three black regions created by the
low sample number in the sequence of steps, three more major differences exists between
the datasets. First, the error e is much larger in the experimental datasets; Second, negative
outputs tend to have negative errors while positive outputs tend to have positive errors, this
is a feature of the experimental dataset that is not observed in the ideal dataset; The last
major difference is that the outputs are more normally distributed around zero than in

77

the ideal dataset. Also, it is interesting to notice that the experimental dataset’s heatmap
is created in the same range as the ideal heatmap, but 28.24% of the data is outside the
shown range.

Although useful, the heatmaps just presented do not tell the whole story about the
dataset, this is because in its creation there is no consideration about the sequence of
samples, which is something of great importance given that C maps not only from samples
at the current time but also from past times. The rate at which the output and error changes
is also of importance and, ideally, the experimental and ideal datasets would have similar
velocity distributions.

To make this similarity analysis, the output’s rate of variation is calculated using the
second order finite difference method for both the ideal and experimental datasets. The
data distribution’s heatmap in the x1 − ẋ1 plane is shown in Figure 28 for the datasets DI

and DE .

Figure 28 – Ideal and experimental dataset velocity distribution.

0.00 0.05

ẋ1 [rad · s−1]

−0.2

−0.1

0.0

0.1

0.2

x
1

[r
a
d
]

DI

0.00 0.05

ẋ1 [rad · s−1]

DE

0 2000 4000 50 75 100 125

Source: author

The DI heatmap of Figure 28 shows that the output velocity is very small and centered
around zero in a shape that, although in a different scale, resemble the error distribution
of the DI dataset of Figure 26. The same, however, does not happen with the output’s
velocity heatmap of the experimental dataset, which shows no similarity with the DI

heatmap. The difference is so big that the data outside DE heatmap range’s amounts to
83.73% of the total dataset.

All those differences between the ideal and experimental dataset make for a very hard
problem to solve when training C(θθθ), since a great deal of generalization would be re-
quired of it. This means that even if θθθ minimizes JV (θθθ) in the training set, because the
experimental dataset is not so representative of the dynamics in the region one wish to

78

apply C(θθθ) to, θθθ does not necessarily minimizes JV (θθθ) in this region of interest. This is
exactly why θθθ minimizes JVtrain(θθθ) and JVtest(θθθ) but does not minimize JVclosed(θθθ).

Another way to understand these effects is that the representative power of the DNN
is spent learning features of the dataset that are of little to no use in the regions explored
by the system when in closed loop, thus, less of DNN representative power is spent where
it actually matters, resulting in a suboptimal predictor and controller.

4.2 DC Motor

This plant is a third order model of a field-controlled DC motor, its dynamics is ex-
tracted from (KH, 1996) and given by

ẋ1 =− Rf

Lf
x1 +

1

Lf
u

ẋ2 =− Ra

La
x2 +

1

La
va −

kb
La
x1x3

ẋ3 =
km
J
x1x2 −

Kf

J
x3

y = x3 + ν(t)

(126)

where u is the field voltage, x3 is the angular velocity, va is the armature voltage and
ν(t) ∼ N(0, σ2) with σ = 0.78. The other parameters are given in Table 1.

Table 1 – DC-Motor parameters
Parameters

Rf = 5 Lf = 3× 10−4 Ra = 2

La = 6× 10−4 va = 15 kb = 5× 10−2

km = 5× 10−2 J = 7× 10−6 Kf = 48× 10−9.

To obtain some information about the system’s characteristics, a unitary step is applied
onto the system, the results are shown in Figure 29.

Figure 29 – Step response of (126).

0.0 0.2 0.4 0.6 0.8 1.0

0
200
400
600
800
1000
1200
1400

t [s]

x
3
[r
a
d
]

79

Figure 29 shows that the system is not oscillatory, has a settling time of about ts =

0.4 s and a gain of 1500 in this unitary step. Applying steps of smaller amplitudes shows
that the system has both settling time and gain that grows inversely proportional to the
step amplitude. From the system response’s shape, seems reasonable to expect that the
linearized system is at least first order.

4.2.1 Case 1: polynomial controller

The results of this subsection were published in (BAZANELLA; ECKHARD; SEHNEM,
2023).

4.2.1.1 Reference Model

The reference model is more easily derived in the continuous time domain, since this
is also the natural domain of the plant. The desired continuous transfer function is

Td(s) =
1203

70

(s+ 70)

(s+ 120)3
(127)

with step response shown in Figure 39.

Figure 30 – Step response of (127).

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

t [s]

x
3
[r
a
d
]

Source: author

The poles here are selected to give the system a settling time that although smaller,
is not too far off of what is observed in open loop, whereas the zeros are selected to
give Td(s) the same relative degree as the plant, without causing too much overshoot.
The discrete time reference model Td(z) is obtained by applying a ZOH to (127) with
sampling time of ∆t = 4ms.

4.2.1.2 Experiment

To generate the IO-data for this case, a white noise where each sample w(t) ∼
U(−1, 1) is first created, this white noise is then filtered using the filter of (39) and linearly
scaled to be in range [−5, 5], this input data is shown in Figure 31.

80

Figure 31 – Part of the input used to excite the system.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−3
−2
−1
0
1
2
3
4

t [s]

u
[v
]

Source: author

Using a filtered white noise is also a viable and practical way of defining an input
signal to excite the system, it is used here to show that in this simpler case, where the
parametrization is linear in the parameters, it suffices to use such signal.

Figure 31 shows that the input used to excite the system never settles to any particular
point and constantly oscillates around zero in a way that seems to explore a lot of the
control, i.e., oscillations of all amplitudes in all the [−5, 5] range.

To obtain the IO-data, the system of equation (126) is simulated with the signal of
Figure 31 for T = 20 s, since this gives enough time for the system to meaningfully
explore its dynamics. The data is collected with a sampling time of ∆t = 4× 10−3. The
noisy collected output is shown, partially, in Figure 32.

Figure 32 – Part of the system’s output.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−600
−400
−200

0
200
400
600

t [s]

x
3
[r
a
d
·s

−
1
]

Source: author

The output of the system shown in Figure 32 shows that the system outputs seems
to follow about the same pattern as the input, oscillations of various amplitudes in all
the range of interest, which is ideal to capture, in the dataset, the complete dynamical
behavior of the system.

81

4.2.1.3 Filtered Signals and Final Dataset

The virtual error is constructed using the output signal presented in Figure 32 with (13)
while the input signal is the one of Figure 31, this, along with the measurement map Z ,
is used to construct the database to train C(θθθ). The measurement map is selected to be the
error integral since zero tracking error is required, a measurement map that accomplishes
this requirement is

Z[r(t)qqq0t , eL(t)qqq
0
t , y(t)qqq

0
t] =

t∑

τ=0

e(τ) (128)

4.2.1.4 Polynomial Controller

If the general form of the system’s dynamics is known, the usage of a simpler parametriza-
tion for the controller, i.e., one that is linear in the parameters, is possible. This form of
parametrization requires the definition of a dictionary of nonlinear functions that will map
the measurements, using a linear combination of the dictionary’s functions, to the control
action. This definition needs to be made carefully since the class of controllers need to
contain (or almost contain) the ideal controller.

Since it is expected that Cr is composed of polynomials in z(t), a polynomial dic-
tionary is created for this case. To give a more parsimonious controller, the polynomial
dictionary of (57) is used, since nz = 1, the controller is defined, after some experimen-
tation, as

C[qqq04z(t), u(t)qqq3;θθθ] = Ps(qqq
0
4z(t);θθθz) + Ps(u(t)qqq3;θθθu), (129)

with parameter vector θθθ = [θθθTz θθθ
T
u]
T and total degree m = 5. The functions of this

dictionary ψψψ(t) =
î
ψ1 ψ2 · · · ψ38

óT
are shown in Table 2.

82

Table 2 – Nonlinear Functions of the dictionary
Functions

ψ1 = z(t) ψ20 = ψ1ψ3ψ5

ψ2 = z(t− 1) ψ21 = ψ1ψ4ψ5

ψ3 = z(t− 2) ψ22 = ψ2ψ3ψ4

ψ4 = z(t− 3) ψ23 = ψ2ψ3ψ5

ψ5 = z(t− 4) ψ24 = ψ2ψ4ψ5

ψ6 = ψ1ψ2 ψ25 = ψ3ψ4ψ5

ψ7 = ψ1ψ3 ψ26 = ψ1ψ2ψ3ψ4

ψ8 = ψ1ψ4 ψ27 = ψ1ψ2ψ3ψ5

ψ9 = ψ1ψ5 ψ28 = ψ1ψ2ψ4ψ5

ψ10 = ψ2ψ3 ψ29 = ψ1ψ3ψ4ψ5

ψ11 = ψ2ψ4 ψ30 = ψ2ψ3ψ4ψ5

ψ12 = ψ2ψ5 ψ31 = ψ1ψ2ψ3ψ4ψ5

ψ13 = ψ3ψ4 ψ32 = u(t− 1)

ψ14 = ψ3ψ5 ψ33 = u(t− 2)

ψ15 = ψ4ψ5 ψ34 = u(t− 3)

ψ16 = ψ1ψ2ψ3 ψ35 = u(t− 1)u(t− 2)

ψ17 = ψ1ψ2ψ4 ψ36 = u(t− 1)u(t− 3)

ψ18 = ψ1ψ2ψ5 ψ37 = u(t− 2)u(t− 3)

ψ19 = ψ1ψ3ψ4 ψ38 = u(t− 1)u(t− 2)u(t− 3)

Since this parametrization is linear in the parameters, the minimum of JV (θθθ) has a
closed form. Making the regression matrix as

Ψ =
î
ψψψ(0) ψψψ(1) · · · ψψψ(N − 4)

óT
, (130)

the minimum of JV (θθθ) is at θθθ0

θθθ0 =
(
ΨTΨ

)−1
ΨTu(t) (131)

which gives JV (θθθ0) = 0.37.

4.2.1.5 Analysis

To evaluate the closed loop performance, the controller of (129) is used to calculate
the control action at every ∆t = 4 × 10−3 s and applied in the continuous system in a
ZOH fashion. This is done in a simulated environment similar to the pendulum case, but
here, the dynamics of (126) are used instead. The result of this simulation when a step
reference of r = 200 rad is shown in Figure 33.

83

Figure 33 – Comparison of closed loop system with the Reference Model to a step re-
sponse.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0

50

100

150

200

t[s]

x
3
[r
a
d
·s

−
1
]

Reference Model
Closed Loop System

Source: author

Figure 33 shows that the closed loop system follows the reference model’s output rea-
sonably, with a bigger overshoot and settling time than given by it. The model reference
cost J(θθθ) in Figure 33 evaluates to J(θθθ) = 60.68, measured on all N = 100 samples of
the Figure. The control action for this step response is shown in Figure 34.

Figure 34 – Closed loop control action of Figure 33.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t [s]

u
[v
]

Source: author

Figure 34 shows that the control applied to the plant in closed loop changes con-
siderably in each sample, indicating that, perhaps, a smaller sampling time would be of
interest. The control signal rapidly approaches a value close to zero, as required for zero
tracking error of a constant reference, although the control does not cross to the negative
side and seems not to be fast enough to prevent the overshoot observed in Figure 33.

In order to show the capabilities of the found controller, Figure 35 shows the closed
loop system and reference model output to a more elaborate reference signal.

84

Figure 35 – Comparison of closed loop system with the reference model for a more chal-
lenging reference.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0
100
200
300
400
500
600
700

t[s]

x
3
[r
a
d
·s

−
1
]

Reference
Reference Model
Closed Loop System

Source: author

Figure 35 shows that the response is somewhat similar for almost all steps, indicating
that the found controller is able to cancel out most of the nonlinearity of the plant while
making the closed loop system follow the reference model closely in all operation points.

The main divergence of the closed loop system and reference model in Figure 35
happens at t = 0.75 s, where in the presence of a big negative step the system overshoots
considerably. This overshooting in decreasing steps pattern also appears in the other such
steps of the Figure, but in a smaller degree.

Since the parametrization is linear, it is possible and also relevant to look at the energy
of each one of the thirty-eight terms of the controller. The energy is defined as

Eum =
N∑

m=1

[θmψm(t)]
2. (132)

The higher the energy of a given term, the more it is contributing to the control. Figure
36 shows the energy of each term for a step response.

Figure 36 shows that the most relevant terms are the ones for m ≈ 20, which are
polynomials of order three in the measurement. On the other hand, the linear terms of
the controller (the first ones) contribute much less to the control, which indicates that the
controller is nonlinear.

4.2.1.6 Noise and L1 regularization

It is also possible to solve the same problem using the least absolute shrinkage and
selection operator (LASSO) cost function of (111), thus creating a regularized version
of JV (θθθ), JV L(θθθ). Choosing an adequate αr is highly problem dependent, generally
speaking, systems that need higher control signals for its operation will also need a higher
αr to meaningfully penalize the parameters, while systems that need control signals closer
to zero will have to use a smaller penalization. One option to automatically choose the
penalization is to divide the IO-data into testing and validation sets, minimize JV L(θθθ)

85

Figure 36 – Energy of each control signal.

0 5 10 15 20 25 30 35 40

m

0

1000

2000

3000

4000

5000

6000

7000

8000

E
u
m

Energy of each Control's Function

Source: author

using the data in the validation set alone and then measure JV (θθθ) on the test set, one can
than gradually increase αr up to a point where the cost on the validation and test sets
are close. This approach gives something close to a minimum penalization that gives
the set of θθθ that makes the predictor C(θθθ) generalize well into the validation set. Here,
however, the parameter was chosen empirically, although using an algorithm close to the
one described above, to αr = 10.

The controllers found using LASSO are similar to the ones found without it, the main
difference is on the robustness of the method, i.e., the probability of finding a set of
parameters that generate a stable closed loop is higher using LASSO than not. To show
this point, 100 Monte Carlo simulations are run for the system (126) with σ = 73.5, the
generated data is then used to find 100 θθθ using LASSO and 100 θθθ not using it.

The generated controllers are then put in closed loop with the system and a step of
400rad · s−1 is applied to it, the model reference cost function J(θθθ) for the controllers are
shown in the histogram of Figure 37 for the controllers found using LASSO.

86

Figure 37 – Model Reference Cost histogram with LASSO.

60 70 80 90 100
0

5

10

15

20

25

30

Source: author

The controllers have a J(θθθ) distribution close to normal and are centered around a cost
of 65. The cost functions are all clipped to have a maximum of 100, all those who have
a model reference cost function clipped to 100 are unstable, with LASSO they amount to
27 out of 100. This seems bad but it is important to consider that the signal-to-noise ratio
in this case equals to five. Figure 38 shows the results for the problem solved without
using LASSO.

Figure 38 – Model Reference Cost histogram without LASSO.

60 70 80 90 100
0

10

20

30

40

50

Source: author

87

Without LASSO the model reference cost functions of Figure 38 are, for the stable
systems, lower on average. But on the negative side, almost half of the closed loop sys-
tems are unstable without LASSO.

These results show that on using regularization, one trades performance for robustness
of the method, which is somewhat expected. Lossing performance is reasonable since now
the cost function is not just minimizing JV while gaining robustness is expected because
the model is less prone to over-fit.

4.2.2 Case 2: DNN controller

4.2.2.1 Reference Model

The same Reference Model as in the case of subsection 4.2.1 is used in this case to
allow a better and easy comparison of the controller’s performance.

4.2.2.2 Experiment

The input signal used to generate the IO-data is a variable amplitude PRBS, i.e., the
ss(t) of (118) with nA = 1600, Ti = 0.1 s and αi ∼ U(−1, 1), signal shown, partially, in
Figure 39.

Figure 39 – Part of the sequence of steps used to excite the system.

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

t [s]

u
[v
]

Source: author

The control signal of Figure 39 shows a control signal that explore all control levels
in the desired range, with step amplitudes of various levels, which is desirable to explore
the system’s dynamics.

To obtain the IO-data the system of equation (126) is simulated with the signal of
Figure 39 for T = 200 s. The data is collected with a sampling time of ∆t = 4 × 10−3.
With the system output noise contamination, the signal-to-noise ratio is approximately
103. The noisy collected output is shown, partially, in Figure 40.

88

Figure 40 – Part of the output of the system.

0 5 10 15 20 25 30 35 40

−2000

−1000

0

1000

2000

t [s]

x
3
[r
a
d
]

Source: author

The system output, shown in Figure 40 shows an output that explores all the output
range of interest with a rate of change that seems to be at least close to what would be
required of the system to operate as the reference model.

4.2.2.3 Filtered Signals and Final Dataset

As in the pendulum case, the filter that will be utilized is the one of (39), a comparison
between the input u(t) and the filtered input uL(t) is shown in Figure 41 and between the
error e(t) and the filtered error eL(t) is shown in Figure 42.

Figure 41 – Comparison of filtered and non filtered input.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

t [s]

u
[v
]

Non Filtered
Filtered

Source: author

The filtered control, shown in Figure 41 is close to the unfiltered control, the main
difference is a smoothing of the steps corners, which seems to be closer to what would be
required of the system in closed loop to follow the reference model, a similar pattern is
shown in Figure 42 for the virtual error.

89

Figure 42 – Comparison of Filtered and Non filtered Error.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−400

−200

0

200

400

t [s]

e
[r
a
d
]

Non Filtered
Filtered

Source: author

Differently from the pendulum case, the filtered and non filtered signals are closer and
the filter has almost no effect in the lower frequency range. The filtered signals are used,
with the measurement map Z , to construct the database to train C(θθθ). The measurement
map, once again, is selected in a way that eases the problem of finding C(θθθ), for that, in
this case, a partial integrator is used for the error. The integrator is deemed partial because
it only accumulates the error over the past 200 samples, i.e., the partially integrated signal
ei(t) is the rolling sum

ei(t) =

τ=t∑

τ=0

eL(τ) ∀t ≤ 200;

τ=t∑

τ=t−200

eL(τ) ∀t > 200.

(133)

The integrated error and the partially integrated error are shown in Figure 43.

Figure 43 – Integrated and partially integrated error.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−1.0

−0.5

0

0.5

1.0
·104

t [s]

e [
·]
[r
a
d
]

∑
eL(t)

ei(t)

Source: author

Figure 43 shows that the ei(t) has a smaller mean and a higher variance than
∑
eL(t),

but that is not the important factor, the real benefit of using the partially integrated error is

90

more clearly seen when looking at the data distribution on the eL(t)− ei(t) plane, shown
in Figure 44.

Figure 44 – Integrated and partially integrated error distribution over eL .

−200 0 200

eL [rad]

−7500

−5000

−2500

0

2500

5000

e i
[r
a
d
]

−200 0 200

eL [rad]

∑
e L

[r
a
d
]

0 500 1000 1500 0 1000 2000 3000

Source: author

On comparing the integrated error distribution with the partially integrated error dis-
tribution, shown both in Figure 44, it is clear that ei is more centered in eL = 0 and better
distributed in its range than the integrated error. The first feature induces the controller to
use the partially integrated error only in regions of low error, which is desirable since this
signal function is to, mostly, provide zero steady state error. The second feature, on the
other hand, gives a better chance of obtaining a predictor that is more easily generalizable.

Thus, using (133), the measurement map is defined as

Z[r(t)qqqt−200
t , eL(t)qqq

t−200
t , y(t)qqqt−200

t] =

y(t)

eL(t)

ei(t)

 . (134)

Using the measurement map (134) is possible to create the database to fit C(θθθ). The
database input is defined as

X =

uL(t1) y(t0) eL(t0) ei(t0)

uL(t2) y(t1) eL(t1) ei(t1)
...

...
...

...

uL(tN − 1) y(tN) eL(tN) ei(tN)

; (135)

and the output as

Y =
î
uL(t0) uL(t1) · · · uL(tN)

óT
. (136)

91

The scaled versions of the input and output databases are created using the same min-
max scaler of (123) utilized in the pendulum using the same range, i.e., a = −1 and
b = 1.

4.2.2.4 DNN-Controller

The chosen architecture is composed of an input layer of 4 neurons, a Gaussian Noise
layer with σ = 0.1, 4 GRU layers, each with 64 cells, and a dense output layer with
linear activation function and 10 neurons. This architecture gives a model with 88970

trainable parameters. It should be noted that this architecture was chosen after some
experimentation, e.g., the same architecture as described above, but with 16 cells instead
of 64, was trained. The smaller simpler architecture has only about 2000 parameters and
only a slightly worse result than the one presented here, the only reason why this is the
chosen architecture to show is to guarantee that any possible poor performance is not due
to the lack of the model’s expressive power.

The GRU layers have a hyperbolic tangent for the output activation function and a
sigmoid for the states. Also, only L1 recurrent regularization is applied, with αrr = 0.1.
The model is of type sequence-to-sequence and all the other parameters are equal to the
pendulum case. With this, the control at time t is given by

u(t) = C[qqq019zzz(t), u(t)qqq20]. (137)

Having 10 output neurons means that at time ti, the DNN predicts the next 10 con-
trol samples, û(ti+1), û(ti+2), · · · , û(ti+10), although in application only the first one,
û(ti+1), is utilized. This works as a form of regularization that promotes control predic-
tions which do not change so abruptly and prediction errors that are more averaged than
would be if only the next control sample was predicted. This is a common practice with
time-series predictions using DNNs (GOODFELLOW; BENGIO; COURVILLE, 2016;
GÉRON, 2022). To be precise, consider that the DNN map DNN is defined as

ûuu(t) = DNN [qqq019zzz(t), u(t)qqq20], (138)

with ûuu(t) = [û(t), û(t+ 1), · · · , û(t+ 10)]T . The control at time t of (137) is then

u(t) = û(t). (139)

To attenuate this averaging effect, the true and predicted controls are linearly de-
creased, from 100% in ti+1 to 90% in ti+10. Since it is a sequence-to-sequence model,
at each of the twenty input time steps, the next ten samples are predicted. Thus, the linear
decrease is made in each of these predictions.

A particularity of the DC-Motor is that in steady-state, since the dynamics assumes
that the motor runs without load, the control input only needs to compensate the friction,
which, for this system, is very small. Thus, to achieve good tracking error the predictions

92

need to be accurate in this particular region of almost zero control input. As discussed, this
is somewhat problematic for the Mean Square Error loss function as it loses sensibility
around zero. For this reason, the Jmcse cost function is used, with αc = 0.8.

As in the pendulum case, training is made using a modified loss function that also
slightly penalizes the predicted control, but in this case, since the next ten samples are
predicted, the penalization is applied in the decreased predictions

ûuud(t) =
î
ûd(t) ûd(t+ 1) · · · ûd(t+Nu)

óT
,

with this, the modified training cost function is

JV m(θθθ) = JVmcse(θθθ) + αu

N∑

t=0

ûuud(t)
T ûuud(t), (140)

where, for this problem, the penalization factor αu = 1× 10−3.

As in the pendulum case, the selected optimizer is the Nadam, with initial learning
rate of 1× 10−4. The plateau learning rate reducer is utilized in training, it is configured
to shrink the learning rate by 10% after 5 epochs with no improvement in the validation
set, up to a minimum learning rate of 1×10−6. The model is trained up to the point where
20 epochs have passed with no improvement on the validation set.

The final training error, measured on the unscaled signals for a better understanding,
is of JVtrain(θθθ) = 1.38×10−4 with a test set error of JVtest(θθθ) = 9.92×10−5, showing good
generalization of the model in the test set.

4.2.2.5 Analysis

To evaluate the trained controller performance, the control is calculated using the
found C(θθθ) in simulation, which is performed using the dynamics of (126), where the
control action is calculated at every ∆t = 4 × 10−3 s and applied in the continuous
system in a ZOH fashion, using the same setup as in the pendulum case. The result of this
simulation when a step reference of r = 200 rad is applied into the system is shown in
Figure 45.

93

Figure 45 – Comparison of closed loop system with the Reference Model to a step re-
sponse.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

50

100

150

200

t[s]

x
3
[r
a
d
·s

−
1
]

Reference Model
Closed Loop System

Source: author

Figure 45 shows that the closed loop system follows the Reference Model output,
although with a significantly bigger overshoot and settling time. Its step response has a
model reference error of J(θθθ) = 228.85, measured on all the N = 30 samples of the
figure.

The control action, generated with C for this case is shown in Figure 46.

Figure 46 – Closed loop control action of Figure 45.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

t [s]

u
[v
]

Source: author

The control signal shown in Figure 46 shows a control signal that seems to be slow
and that changes significantly in each sampling time, there is also a significant cross to the
negative control which, together with its slowness, seem to be the cause of the observed
overshoot.

Unlike in the pendulum case, the controller herein found does not seem to leave any
important feature of the system’s dynamics out, its only defect is its slowness, which
seems to be the cause of the observed overshoot, as seen in Figures 45 and 46.

Evaluating the closed loop prediction error, i.e., JVclosed, for the step of Figure 45 tells
a misleading story, the reason is that much of the predicted control is very close to zero
(when not exactly on it), which causes the low sensitivity of JV for this trajectory. To

94

present this metric in a more meaningful setup and to show the controller’s capability,
the system is simulated in a more challenging reference. Figure 47 shows the system and
reference model response to a sequence of varying amplitude steps, ramps and second
order reference.

Figure 47 – Comparison of closed loop system with the Reference Model to a more chal-
lenging reference.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0
100
200
300
400
500
600
700

t[s]

x
3
[r
a
d
·s

−
1
]

Reference
Reference Model
Closed Loop System

Source: author

As shown in Figure 47, the closed loop system response is similar for small steps of
same amplitude and different operating points, the main difference being the size of the
overshoot, indicating that the found controller C does not fully cancel out the nonlinearity
of the system. This effect is even clearer at time t = 0.75 s, where in the presence of
a bigger step size, the closed loop system output is nowhere close the reference model’s
output, although it still is able to recover and follow the step at its end. Another noticeable
effect is that steps that go from a higher to lower operating points generates outputs from
the closed loop system that are much closer to the reference model, this effect is likely
due to the bias on the Jmsle cost function.

Figure 48 shows the control signal of the closed loop system of Figure 47. It is possible
to see that, at t = 0.75 s, the controller predicted a control that went to about −0.5 v then,
instead of continuing to decrease, it went back up to the zero region. The control action
then decreased, in a much less abrupt way, to about −1 v at the end of the step, indicating
that the reference was only followed due to the integrator property of the found controller.

95

Figure 48 – Control of the closed loop system of Figure 47.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

t [s]

u
[v
]

Source: author

To calculate the closed loop estimation error, the virtual error is calculated for the
trajectory of Figure 47, and the predictor C is inputted with this signal instead of the
actual closed loop error, as in the pendulum case, this allows to calculate the prediction
error in this specific trajectory. Also, the error is better represented in this trajectory,
where the control signal average is not so close to zero as in the single step of Figure 45.
The prediction error in this trajectory is of JVclose = 6.49× 10−3, a percent error of 6440%
when compared with JVtest.

This result seems to indicate that the experimental dataset is not fully representative
of the system’s dynamics and that a better experiment could be performed to explore
it. To show the difference between the ideal and experimental data distributions, the
ideal dataset is created using a sequence of steps ss(t) with nA = 2000, Ti = 0.1 s and
αi ∼ U(−2000, 2000), the reference and the reference model output are shown, up to
t ≈ 0.8s, in Figure 49.

Figure 49 – Reference and Reference Model output for the creation of the ideal dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−1500

−1000

−500
0

500

1000

t [s]

x
3
[r
a
d
·s

−
1
]

Reference
Reference Model

Source: author

The reference and reference model signals from Figure 49 are created to have the
exact same number of samples as the experimental dataset, which allows a more straight-
forward comparison and to have the same properties as in the ideal dataset creation of the
pendulum case, i.e., reasonably slow to allow the reference model to settle.

96

Figure 50 shows the heatmaps for the ideal DI and experimental DE datasets. The
Figure is created in the same way as in the pendulum case, here, however, the maximum
range is from DE , this way, all the experimental data is in the heatmap while not all the
DI is in its heatmap. In other words, to better show the patterns in the data, the heatmaps
are created using the minimum data range among the two datasets.

Figure 50 – Ideal and Experimental datasets distribution.

−200 0 200

e [rad]

−2000

−1000

0

1000

2000

x
3

[r
a
d
]

DI

−200 0 200

e [rad]

DE

0 1000 2000 3000 0 1000 2000

Source: author

As shown in Figure 50, the ideal dataset has its data much more centered around zero
error, much like in the pendulum case. Here, however, the ideal dataset has a much larger
range than the experimental dataset. The DI heatmap shows a slight tendency on the
data, where positive errors tend to have negative outputs and negative errors tend to have
positive outputs, the exact opposite pattern happens in the DE heatmap, indicating that
the signal used to excite the system is not ideal.

The experimental dataset also emphasizes regions of greater error magnitude more
than the ideal dataset, although DI have regions of much greater error, this is so much
so that about 17% of the ideal dataset’s data is not in the Figure 50. This shows that the
experimental dataset does not even have data in the range of the expected closed loop
operation. To makes matters worse, where it does have data, the distribution differs from
the ideal dataset, this is better shown in the difference heatmap, created just like in the
pendulum case and shown, for this case, in Figure 51.

97

Figure 51 – Difference heatmap between ideal and experimental datasets.

−200 −100 0 100 200

e [rad]

−2000

−1000

0

1000

2000

x
3

[r
a
d
]

0

500

1000

1500

2000

2500

Source: author

The difference heatmap of Figure 51 shows that the differences between DI and DE

are substantial, which is expected since the ideal dataset have data concentrated in regions
that the experimental dataset does not even cover, which is the reason why the difference
go as high as the maximum samples per region in both datasets. The difference, however,
is lower around zero error and output, showing that particularly with low positive errors
and outputs the experimental dataset is representative of the region of interest. The same
pattern appears in the output velocity datasets comparison, shown in Figure 52.

Figure 52 – Ideal and Experimental datasets velocity distribution.

−20000 0 20000

ẋ3 [rad · s−1]

−2000

−1000

0

1000

2000

x
3

[r
a
d
]

DI

−20000 0 20000

ẋ3 [rad · s−1]

DE

1000 2000 3000 0 2000

Source: author

98

This difference along with the DE distribution explains why, in Figure 47, the majority
of the steps and other kinds of reference are closer to the reference model’s output than
the big step that go from 700 rad to 100 rad: the error in the beginning of the step is
of 600 rad, which is not even close to what is in the experimental dataset, in fact, the
system is only able to recover in this case because of the partially integrated error signal,
which happens to be in range8 and it is the reason why the system takes some time to start
properly following the step. To show that this is indeed the case, Figure 53 shows the
closed loop response using a smoothed version of the reference in Figure 47.

Figure 53 – Comparison of closed loop system with the Reference Model to the smoothed
reference.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0
100
200
300
400
500
600
700

t[s]

x
3
[r
a
d
·s

−
1
]

Reference
Reference Model
Closed Loop System

Source: author

Since the reference in Figure 53 does not abruptly changes, the error never grows to
be bigger than what was present in the experimental dataset and thus the predictor C does
not make errors as big as it does in the unfiltered reference, in fact, JVclose = 4.30× 10−4,
a percent error of 333.42% when compared with JVtest, much smaller than in the unfiltered
case. The model reference error measured on all N = 500 samples of the filtered input is
of J(θθθ) = 162.76.

This shows that, once again, the main problem with the DNN approach is with its
generalization. The generated training data does not seem to explore well the output-error
space of interest in application, which ends up requiring more generalization power of the
DNN than its available, delivering a model that has poor generalization in the closed loop
set.

4.2.3 Case 3: DNN controller with modified Reference Model

4.2.3.1 Reference Model

In this case a different reference model, although with the same control objectives,
i.e., a closed loop system with unitary gain and settling time of about ts = 4 × 10−2 s,
will be used to analyze if the problems encountered in subsection 4.2.2 can be solved by

8Not shown here.

99

simply changing the reference model. The continuous time reference model is defined as

Srn =
1203

100 · 200
(s+ 100)(s+ 200)

(s+ 120)3
, (141)

with step response in Figure 54, shown in comparison with the step response of Sr, of
(127).

Figure 54 – Step response of (141).

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

t [s]

x
3
[r
a
d
·s

−
1
]

Srn
Sr

Source: author

As shown in Figure 54, the new reference model Srn has an output that is very close
to the Sr’s, which accomplishes the goal of satisfying the same control objectives.

4.2.3.2 Experiment

To show that the differences in the reference model alone, an experiment is performed
on the system using the same input as in the last case, i.e., the input shown of Figure 39.
The output is, appart from the different realization of noise, the same as in Figure 40 and
the data is collected with sampling time of ∆t = 4× 10−3.

4.2.3.3 Filtered Signals and Final Dataset

Since the filter of (39) depends on the Reference Model, even with the data input
output data being the same, the filtered data will be different. Moreover, the virtual error
is different from the start since it depends on the Reference Model as well. A comparison
between the input u(t) and the filtered input uL(t) is shown in Figure 55 and between the
error e(t) and the filtered error eL(t) is shown in Figure 56.

100

Figure 55 – Comparison of filtered and non filtered input.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

t [s]

u
[N

·m
]

Non Filtered
Filtered

Source: author

Figure 56 – Comparison of Filtered Error and Non filtered.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−200
−150
−100
−50

0
50
100
150

t [s]

e [
·]
[r
a
d
·s

−
1
]

Non Filtered
Filtered

Source: author

Although the control in Figure 55 has no overshoot when compared with the one of
41, the main difference here is on the noise level of the non-filtered error signal, which is
much lower in Figure 56 than in Figure 42. In fact, the reference model itself was chosen
in part for this specific characteristic.

For consistency, all the other characteristics of the final dataset definition are the same
as presented in sub-section 4.2.2.3.

4.2.3.4 DNN-Controller

Again, for consistency, the DNN architecture is the same as presented in sub-section
4.2.2.4.

The final training error, measured on the unscaled signals for a better understanding,
is of JVtrain(θθθ) = 2.41 × 10−4 with a test set error of JVtest(θθθ) = 1.73 × 10−4, showing,
once again, good generalization of the model in the test set.

It should be noted that the training error in this case is almost 1.7 times bigger than
in the past case. Since the DNN has its weights initialized randomly and the system have
noise in its output, that alone could explain the difference. Another possible explanation

101

is that the virtual error is different from the past case, therefore, the bigger error could in-
dicate a more complex dataset, one that is harder to predict on due to its richer generating
dynamics and explored spaces.

4.2.3.5 Analysis

As before, to evaluate the trained controller performance, the control is calculated
using the found C(θθθ) and a simulation is performed using the dynamics of (126), where the
control action is calculated at every ∆t = 4×10−3 s and applied in the continuous system
in a ZOH fashion. The result of this simulation, when a step reference of r = 200 rad is
applied onto the system, is shown in Figure 57.

Figure 57 – Comparison of closed loop system with the Reference Model to a step re-
sponse.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

50

100

150

200

t[s]

x
3
[r
a
d
·s

−
1
]

Reference Model
Closed Loop System

Source: author

The step response in Figure 57 has a model reference error of J(θθθ) = 113.35, mea-
sured on all the N = 30 samples of the figure. The closed loop system follows the
reference model with some overshoot but this time its smaller than in the last case when
compared to the reference model, which is confirmed by the reference model error.

The control action, generated with C for this case is shown in Figure 58.

Figure 58 – Closed loop control action of Figure 57.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.0

0.2

0.4

0.6

0.8

1.0

t [s]

u
[v
]

Source: author

102

Both output and input look almost the same as in the Figures 45 and 46, but even
small, the differences are enough to give a much better response, as indicated by the
model reference errors of the two cases.

Figure 59 shows the system and reference model response to the same reference as
the one of Figure 47.

Figure 59 – Comparison of closed loop system with the Reference Model to a more chal-
lenging reference.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0
100
200
300
400
500
600
700

t[s]

x
3
[r
a
d
·s

−
1
]

Reference
Reference Model
Closed Loop System

Source: author

As shown in Figure 59, the closed loop system response is similar for small steps of
same amplitude and different operating points, the main difference being, once again, the
size of the overshoot, indicating that the found controller C does not fully cancel out the
nonlinearity of the system. There is, however, a much better tracking and matching with
the Reference Model’s output. Now, nothing special happens at time t = 0.75 s and the
closed loop system has basically the same overall behavior in all of its output space.

One last analysis to make is to look at the datasets distribution, the ideal dataset is
created using the same reference as shown in Figure 49 but using the Reference Model
output of Srn.

Figure 60 shows the heatmaps for the ideal DI and experimental DE datasets.

103

Figure 60 – Ideal and Experimental datasets distribution.

−200 0 200

e [rad]

−2000

−1000

0

1000

2000

x
3

[r
a
d
]

DI

−200 0 200

e [rad]

DE

0 500 1000 1500 0 1000 2000

Source: author

While in Figure 50, the ideal dataset has the DI heatmap showing a slight tendency on
the data, where positive errors tend to have negative outputs and negative errors tend to
have positive outputs, the exact opposite pattern happens in the ideal dataset DI , shown
in Figure 60. Now the DE heatmap matches the ideal dataset better. The same pattern
matching is observed in the velocity distributions of DI and DE . This seems to be the
main reason why in this case the closed loop system performs better, the experimental
dataset better explores the dynamics of the system in the regions that are of interest when
in closed loop.

Although DI and DE are a better match in this case, they’re still different in many
regions, thus, it is interesting to see the performance metrics of this closed loop system
with the smoothed reference of Figure 53, the system’s response is shown in Figure 61.

Figure 61 – Comparison of closed loop system with the Reference Model to the smoothed
reference.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0
100
200
300
400
500
600
700

t[s]

x
3
[r
a
d
·s

−
1
]

Reference
Reference Model
Closed Loop System

Source: author

104

Here, the model reference error measured on all N = 500 samples of the filtered
input is of J(θθθ) = 77.53, about 2.1 times less than in the previous case. As in the last case
the main problem with the DNN approach seems to be with generating training data that
explores the output-error space of interest in application.

4.2.4 Case 4: super-sampling

Both controllers found using the Reference Models Sr and Srn seem to have a some-
what slower response than their reference model’s. One way to improve this aspect is to
simply lower the sampling time.

Consider that the discrete representation Cdis has, for a sampling time of ∆t, a contin-
uous representation Ccon,1, with poles ppp1 and has, for a sampling time ∆t/2, a continuous
representation Ccon,2, with poles ppp2.

In a linear controller, the effect of lowering the sampling time from ∆t to ∆t/2 while
maintaining the same discrete representation Cdis is of increasing the poles ppp1 to ppp2 with
ppp2 = 2ppp1, thus making the controller response of Ccon,2 faster than Ccon,1. Therefore, one
possible way of improving the performance of the controllers found in subsections 4.2.2
and 4.2.3 is to just super-sample them.

To show that this does indeed improve the closed loop performance, the system (126)
is simulated as before, the same controller found in subsection 4.2.2 is used. But, this
time, the control action is calculated at every ∆t = 2×10−3 and applied in the continuous
system in a ZOH fashion. The system’s closed loop response to a step of 200 rad · s−1 is
shown in Figure 62.

Figure 62 – Comparison of closed loop system with the Reference Model to a more chal-
lenging reference.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0
25
50
75
100
125
150
175
200

t[s]

x
3
[r
a
d
·s

−
1
]

Reference Model
Closed Loop System

Source: author

The step response in Figure 62 has a model reference error of J(θθθ) = 127.49 measured
on all the 60 samples, i.e., up to the same time as in the case of subsection 4.2.2, an error
1.7 times smaller than before. The same behavior holds in all the output space of the
closed loop system, as shown in Figure 63.

105

Figure 63 – Comparison of closed loop system with the Reference Model to a more chal-
lenging reference.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0
100
200
300
400
500
600
700

t[s]

x
3
[r
a
d
·s

−
1
]

Reference
Reference Model
Closed Loop System

Source: author

Figure 63 shows also that the same behavior with the negative step happens in this
super sampled system, which is reasonable since the same big error appears to a controller
that wasn’t trained to such error magnitudes.

Figure 64 shows the step response of the closed loop system using the same controller
as the one found in subsection 4.2.3, but sampled at ∆t = 2× 10−3.

Figure 64 – Comparison of closed loop system with the Reference Model.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0
25
50
75
100
125
150
175
200

t[s]

x
3
[r
a
d
·s

−
1
]

Reference Model
Closed Loop System

Source: author

The step response in Figure 64 has a model reference error of J(θθθ) = 42.51 measured
on all the 60 samples, i.e., up to the same time as in the case of subsection 4.2.3, almost
2.7 times less than before. Once again, the same behavior holds in all the output space of
the closed loop system, as shown in Figure 65.

106

Figure 65 – Comparison of closed loop system with the Reference Model to a more chal-
lenging reference.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0
100
200
300
400
500
600
700

t[s]

x
3
[r
a
d
·s

−
1
]

Reference
Reference Model
Closed Loop System

Source: author

The closed loop response shown in Figure 65 shows that the super sampled closed
loop system follows the Reference Model much closer than before.

The above examples show that super-sampling the closed loop system is an option to
improve the closed loop response of the system without the need to train another con-
troller. It is also interesting to notice that sampling the system at ∆t = 2× 10−4 to create
the IO-data from the start does not work, the problem becomes much harder to solve since
the noise in the virtual error grows substantially.

107

5 CONCLUSION

In this work, the nonlinear VRFT method was used to design nonlinear controllers
using two different classes of parametrizations, polynomial and Deep Neural Networks,
where in both of them a form of regularization was used to limit the model complexity
and to better minimize the VRFT cost function on the test set.

Polynomial parametrizations are an interesting alternative, because they’re linear in
the parameters, the VRFT problem can be solved without an iterative procedure. Nonlin-
ear systems, however, can have fairly complex behavior, and a controller parametrization
that is linear in the parameters can become cumbersome to define and work with, since
they might require a number of parameters that is too large.

One of the reason why DNNs are used in this work is to alleviate the controller
parametrization definition, one of the most challenging tasks involved in the method’s
application. Since, as shown, the same DNN can be used as a controller parametrization
even when different systems are considered. Using DNNs in the context of VRFT is not a
new idea, for instance, (ESPARZA; SALA; ALBERTOS, 2011) used DNNs in this con-
text, there, however, the filter used to match the J and JV cost functions is a linear system
that needs to be evolved with the optimization procedure for all parameters, an approach
that adds on the computational complexity of training the model.

One of the contributions of this master thesis is using DNNs as the controller, but in-
stead of using the filter of (ESPARZA; SALA; ALBERTOS, 2011) or (CAMPI; SAVARESI,
2006), using the same filter as in the linear VRFT. This filter is applied before training in
the virtual error and control signals, and does not add extra complexity in training, allow-
ing the usage of much bigger and complex DNNs. The usage of the GRU cells is, to the
best of this author’s knowledge, new in this context and the results indicate that its usage
as a controller parametrization is promising.

Another contribution of this work is on the provided analysis to the obtained results,
mainly the dataset mismatch of what would be an ideal dataset and the obtained dataset in
experiment. These results seem to indicate that a better exciting signal should be used in
place of the one used in this work, the imperfections in the controller’s performance seems
at least partially, as the results shows, to be caused by a lack of data of the system in the

108

region where the reference model operates. It is not clear how much of the imperfections
are caused by this reason and by the VRFT method alone and this analysis is left for
future works, where, perhaps, one can utilize other one-shot DD methods, such as OCI,
to compare the results.

Regularization has been shown to be very important when using DNNs as controllers,
allowing them to perform well on the test set and ultimately in indirectly minimizing the
model reference cost function. This was also observed in the simpler linearly parametrized
controller, where a Monte Carlo simulation indicated that the use of L1 regularization
gives more robustness to the method’s application1 when on environments with lower
signal-to-noise ratios.

From the results of this work it is possible to conclude that the usage of the VRFT
with DNN controllers is a viable option with the simpler linear filter herein used. Also,
more attention should be taken in designing the input signal to excite the system for the
data acquisition. Due to the complexity of nonlinear systems, an input signal that better
explores the desired system’s dynamics in closed loop is essential in the success of the
method’s application. Thus, a promising direction for future works in this area seems to
be in designing input signals that attempt to excite the system in a way that not only the
input-error heatmap is matched but also the input-velocity heatmap.

Another interesting future line of work that seems to be promising is in designing a
RNN model that is more generalizable for this problem. Ideally both the model gener-
alization and the dataset quality should be improved, but improving the generalization
power of the model might show itself easier to deal with. The machine learning com-
munity has many regularization techniques specifically designed for RNNs and DNNs in
general, see (GÉRON, 2022; GOODFELLOW; BENGIO; COURVILLE, 2016; CHARU,
2018) for examples, some of them were used in this work, but not all. It seems likely
that a better generalizing method can be applied to the RNNs herein used, giving better
controllers.

1In the sense that increases the chance of a controller rendering the closed loop dynamics stable.

109

REFERENCES

ÅSTRÖM, K. J.; WITTENMARK, B. Adaptive control. [S.l.]: Courier Corporation,
2013.

BAZANELLA, A. S.; CAMPESTRINI, L.; ECKHARD, D. Data-driven controller
design: the h2 approach. [S.l.]: Springer Science & Business Media, 2011.

BAZANELLA, A. S.; ECKHARD, D.; SEHNEM, R. M. Nonlinear VRFT with LASSO.
In: BRAZILIAN SYMPOSIUM ON INTELLIGENT AUTOMATION (SBAI,
MANAUS, AMAZONAS, OCTOBER 2023), 30., 2023, Manaus, Amazonas.
Proceedings [. . .] [S.l.: s.n.], 2023. v. 1, n. 1.

BISHOP, C. M. Training with noise is equivalent to Tikhonov regularization. Neural
computation, [S.l.], v. 7, n. 1, p. 108–116, 1995.

BOEIRA, E. C.; ECKHARD, D. C. Multivariable virtual reference feedback tuning with
Bayesian regularization. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA-CBA,
2019. Proceedings [. . .] [S.l.: s.n.], 2019. v. 1, n. 1.

BUŞONIU, L. et al. Reinforcement learning for control: performance, stability, and deep
approximators. Annual Reviews in Control, [S.l.], v. 46, p. 8–28, 2018.

CAMPESTRINI, L. et al. Data-driven model reference control design by prediction error
identification. Journal of the Franklin Institute, [S.l.], v. 354, n. 6, p. 2628–2647, 2017.

CAMPI, M. C.; LECCHINI, A.; SAVARESI, S. M. Virtual reference feedback tuning: a
direct method for the design of feedback controllers. Automatica, [S.l.], v. 38, n. 8, p.
1337–1346, 2002.

CAMPI, M. C.; SAVARESI, S. M. Direct nonlinear control design: the virtual reference
feedback tuning (vrft) approach. IEEE Transactions on Automatic Control, [S.l.], v.
51, n. 1, p. 14–27, 2006.

CARRASCO, D. S.; GOODWIN, G. C.; YUZ, J. I. Vector measures of accuracy for
sampled data models of nonlinear systems. IEEE Transactions on Automatic Control,
[S.l.], v. 58, n. 1, p. 224–230, 2012.

110

CHARU, C. A. Neural networks and deep learning: a textbook. [S.l.]: Spinger, 2018.

CHO, K. et al. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, [S.l.], 2014.

DOZAT, T. Incorporating Nesterov Momentum into ADAM. OpenReview, [S.l.], 2015.
Available at: <https://api.semanticscholar.org/CorpusID:620137>.
Accessed in: 30 nov 2023.

DUCHI, J.; HAZAN, E.; SINGER, Y. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, [S.l.], v. 12, n. 7,
2011.

ESPARZA, A.; SALA, A.; ALBERTOS, P. Neural networks in virtual reference tuning.
Engineering Applications of Artificial Intelligence, [S.l.], v. 24, n. 6, p. 983–995,
2011.

FORMENTIN, S.; KARIMI, A. Enhancing statistical performance of data-driven
controller tuning via L2-regularization. Automatica, [S.l.], v. 50, n. 5, p. 1514–1520,
2014.

GÉRON, A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow.
New York: " O’Reilly Media, Inc.", 2022. 856 p.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press,
2016.

GREFF, K. et al. LSTM: a search space odyssey. IEEE transactions on neural
networks and learning systems, [S.l.], v. 28, n. 10, p. 2222–2232, 2016.

GRIEWANK, A. Who invented the reverse mode of differentiation. Documenta
Mathematica, Extra Volume ISMP, [S.l.], v. 389400, 2012.

HJALMARSSON, H.; GUNNARSSON, S.; GEVERS, M. A convergent iterative
restricted complexity control design scheme. In: IEEE CONFERENCE ON DECISION
AND CONTROL, 1994., 1994. Proceedings [. . .] [S.l.: s.n.], 1994. v. 2, p. 1735–1740.

HJALMARSSON, H. et al. Iterative feedback tuning: theory and applications. IEEE
control systems magazine, [S.l.], v. 18, n. 4, p. 26–41, 1998.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural
computation, [S.l.], v. 9, n. 8, p. 1735–1780, 1997.

KAMMER, L. C.; BITMEAD, R. R.; BARTLETT, P. L. Direct iterative tuning via
spectral analysis. Automatica, [S.l.], v. 36, n. 9, p. 1301–1307, 2000.

<https://api.semanticscholar.org/CorpusID:620137>

111

KARIMI, A.; MIŠKOVIĆ, L.; BONVIN, D. Iterative correlation-based controller
tuning. International journal of adaptive control and signal processing, [S.l.], v. 18,
n. 8, p. 645–664, 2004.

KH, K. Nonlinear Systems. [S.l.]: Englewood Cliffs, NJ, Prentice-Hall, 1996.

KINGMA, D. P.; BA, J. Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980, [S.l.], 2014.

LINNAINMAA, S. The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. 1970. 66 p. Master
Thesis (in Finnish) — University of Helsinki, 1970.

LINNAINMAA, S. Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics, [S.l.], v. 16, n. 2, p. 146–160, 1976.

LIU, R.; SHANG, Z.; CHENG, G. On deep instrumental variables estimate. arXiv
preprint arXiv:2004.14954, [S.l.], 2020.

LJUNG, L. System Identification: theory for the user. [S.l.]: Prentice Hall PTR, 1999.
(Prentice Hall information and system sciences series).

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, [S.l.], v. 5, p. 115–133, 1943.

MNIH, V. et al. Human-level control through deep reinforcement learning. nature,
[S.l.], v. 518, n. 7540, p. 529–533, 2015.

MONTÚFAR, G. F. Universal approximation depth and errors of narrow belief networks
with discrete units. Neural computation, [S.l.], v. 26, n. 7, p. 1386–1407, 2014.

NESTEROV, Y. E. A method of solving a convex programming problem with
convergence rate O\bigl(kˆ2\bigr). In: DOKLADY AKADEMII NAUK, 1983.
Proceedings [. . .] [S.l.: s.n.], 1983. v. 269, n. 3, p. 543–547.

PILLONETTO, G. et al. Kernel methods in system identification, machine learning and
function estimation: a survey. Automatica, [S.l.], v. 50, n. 3, p. 657–682, 2014.

POLYAK, B. T. Some methods of speeding up the convergence of iteration methods.
Ussr computational mathematics and mathematical physics, [S.l.], v. 4, n. 5, p. 1–17,
1964.

RALLO, G. et al. Virtual reference feedback tuning with bayesian regularization. In:
EUROPEAN CONTROL CONFERENCE (ECC), 2016., 2016. Proceedings [. . .]
[S.l.: s.n.], 2016. p. 507–512.

112

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, [S.l.], v. 65, n. 6, p. 386, 1958.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. Nature, [S.l.], v. 323, n. 6088, p. 533–536, 1986.

SCHMIDHUBER, J. Deep learning in neural networks: an overview. Neural networks,
[S.l.], v. 61, p. 85–117, 2015.

SCHOUKENS, J.; RELAN, R.; SCHOUKENS, M. Discrete time approximation of
continuous time nonlinear state space models. IFAC-PapersOnLine, [S.l.], v. 50, n. 1, p.
8339–8346, 2017.

SIETSMA, J.; DOW, R. J. Creating artificial neural networks that generalize. Neural
networks, [S.l.], v. 4, n. 1, p. 67–79, 1991.

SÖDERSTRÖM, T. Errors-in-variables methods in system identification. Automatica,
[S.l.], v. 43, n. 6, p. 939–958, 2007.

SÖDERSTRÖM, T. Errors-in-variables methods in system identification. [S.l.]:
Springer, 2018.

SÖDERSTRÖM, T.; STOICA, P. System Identification. [S.l.]: Prentice Hall, 1989.
(Prentice-Hall Software Series).

WANNER, G.; HAIRER, E. Solving ordinary differential equations II. [S.l.]:
Springer Berlin Heidelberg New York, 1996. v. 375.

WATKINS, C. J.; DAYAN, P. Q-learning. Machine learning, [S.l.], v. 8, p. 279–292,
1992.

WILSON, D. R.; MARTINEZ, T. R. The general inefficiency of batch training for
gradient descent learning. Neural networks, [S.l.], v. 16, n. 10, p. 1429–1451, 2003.

YUZ, J. I.; GOODWIN, G. C. On sampled-data models for nonlinear systems. IEEE
transactions on automatic control, [S.l.], v. 50, n. 10, p. 1477–1489, 2005.

ZIEGLER, J. G.; NICHOLS, N. B. Optimum settings for automatic controllers.
Transactions of the American society of mechanical engineers, [S.l.], v. 64, n. 8, p.
759–765, 1942.

	Introduction
	Motivation
	Previous work on DD control design methods
	Contribution and organization

	Virtual Reference Feedback Tuning
	System Definition
	Control Architecture
	VRFT Algorithm
	JV(-.4) as a means to J(-.4)

	Mismatched Controller
	Linear VRFT
	Nonlinear VRFT
	Filter application

	Non Unique Minimizer of JV(-.4)
	Effects of Measurement Noise

	Controller Parametrizations
	Polynomial
	Deep Neural Networks
	The Perceptron
	The Multilayer Perceptron
	Activation Functions
	Cost Functions
	Stochastic Gradient Descent
	Backpropagation
	Recurrent Neural Networks

	Regularization
	Parameter Regularization
	Gaussian Noise Contamination
	Regularization in VRFT context

	Case Studies
	Simple Pendulum
	Case 1

	DC Motor
	Case 1: polynomial controller
	Case 2: DNN controller
	Case 3: DNN controller with modified Reference Model
	Case 4: super-sampling

	Conclusion
	References

