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ABSTRACT

In the last decades, rising energy consumption and production became one of the main
problems of humanity. Energy efficiency can help save energy. GPUs are an example
of highly energy-efficient hardware. However, energy efficiency is not enough, energy
proportionality is needed. The objective of this work is to create an entire platform that
allows execution of GPU operators in an energy proportional DBMS, WattBD, and also
a GPU Sort operator to prove that this new platform works. A different approach to
integrate the GPU into the database has been used. Existing solutions to this problem
aims to optimize specific areas of the DBMS, or provides extensions to the SQL language
to specify GPU operation, thus, lacking flexibility to optimize all database operations,
or provide transparency of the GPU execution to the user. This framework differs from
existing strategies manipulating the creation and insertion of GPU operators directly into
the query plan tree, allowing a more flexible and transparent framework to integrate new
GPU-enabled operators. Results show that it was possible to easily develop a GPU sort
operator with this framework. We believe that this framework will allow a new approach
to integrate GPUs into existing databases, and therefore achieve more energy efficient
DBMS.

Keywords: GPU, CUDA, WattDB, database, framework, GPGPU, energy-efficiency,
energy-proportionality.





RESUMO

O aumento do consumo produção de energia elétrica tornou-se um dos principais
problemas da humanidade nas últimas décadas. A eficiência energética pode ajudar a
economizar energia. GPUs são um exemplo de hardware altamente eficientes em termos
energéticos. No entanto, a eficiência energética não é suficiente, a proporcionalidade
energética é necessária. O objetivo deste trabalho é criar uma plataforma completa que
permite a execução de operadores em GPU para um sistema de gerência de banco de
dados proporcionalmente energético, o WattBD, e também um operador de ordenamento
em GPU para provar que essa nova plataforma funciona. Uma abordagem diferente para
integrar a GPU no banco de dados foi utilizada. As soluções existentes para este problema
tem como objetivo otimizar áreas específicas do sistema de gerência de banco de dados,
ou fornecem extensões para a linguagem SQL que permitem especificar manualmente
operações em GPU, resultando em pouca flexibilidade para otimizar todas as operações
de banco de dados, ou garantir a transparência da execução em GPU para o usuário.
Esse framework difere de estratégias existentes por manipular a criação e inserção de
operadores em GPU diretamente no plano de execução, permitindo um framework mais
flexível e transparente para integrar os novos operadores de GPU. Resultados mostram
que este framwork possibilitou o desenvolvimento um operador em GPU de forma fácil.
Acreditamos que este framework irá permitir uma nova abordagem para integrar GPUs
em bases de dados existentes e, portanto, alcançar maior eficiência energética em sistemas
de gerência de banco de dados.

Palavras-chave: GPU, CUDA, WattDB, database, framework, GPGPU, energy-efficiency,
energy-proportionality.
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1 INTRODUCTION

In the last decades, energy consumption and production became one of the main prob-
lems of humanity for economic and environmental reasons. Energy consumption is grow-
ing exponentially in all business areas. This trend is also followed in DBMSs, with con-
stant growth of data that leads to bigger database systems. The first way to solve this
problem is to generate always more energy. This solution is not perfect because the earth
has a limited amount of energy to provide, and it will be impossible to follow an expo-
nential curve of energy consumption growth. The second ways is to spend less energy,
without harming performance. Energy efficiency can help save energy.

In this work, energy efficiency will be measured with Performance per Watt. Perfor-
mance per Watt measures the rate of computation that can be delivered for every watt
consumed. FLOPS per watt is a common measure of performance per watt. GPUs are
an example of highly energy-efficient hardware because they have a high FLOPS per
watt ratio. It is possible to achieve a higher performance per watt using general purpose
computation on GPU because they are simpler than CPUs, and focus in massive parallel
computation. Therefore, they can be good solution to spend less energy in a computing
system.

Energy efficiency is, however, not enough. Energy proportionality is needed
(Härder et al. 2011). The energy proportionality concept is to spend just the required
amount of energy proportionally to system load. If a system uses 100 Watts at 100% load,
it should use 50 Watts at 50%. This behavior is not followed in todays hardware, even in
energy-efficient ones: a typical database server consumes about 60% of its peak energy
consumption when idle (Tsirogiannis et al. 2010).

WattDB (Schall e Hudlet 2011) is a distributed database system running on commod-
ity hardware that tries to be energy-proportional using a software strategy, and thus, sav-
ing energy, compared to an off-the-shelf server. WattDB is a database cluster of energy-
efficient nodes. It dynamically turns nodes on and off, according to the overall cluster
load. It is possible to achieve an approximation of the energy-proportional behavior with
this architecture because every single node is supposed to be on a high load. Currently,
WattDB just uses energy-efficient CPUs in the computing nodes.

The objective of this work is to create an entire platform that allows execution of
GPU operators in WattBD, and also a GPU Sort operator to prove that this new platform
works. This should increase the energy efficiency of WattDB. The main problem is that
it is not possible to simply start running all code on GPU. GPUs have a separate memory,
therefore constant memory copies between main memory and GPU memory needs to
be done. The parallel architecture of the GPU also requires special designed code, and
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since the processor is not identical to a CPU, a special compiler is needed. The proposed
framework tries to solve this problems, and experiments show that it was possible to
easily develop a GPU sort operator with this framework, and sorting on GPU is more
energy efficient than sorting on CPU.

A lot of effort has been done before to use GPU in other DBMSs, such as using
OpenGL (Mancheril 2011), creating CUDA enabled SQL procedures (PGOpenCL), or
changing specific database operators to work alone with CUDA (Bakkum e Skadron 2010).
Although they show good results alone, these are all very different approaches, that cover
small cases, and does not have a portable and extensible architecture that can be reused in
any database system. A different approach from existing ones has been used to integrate
the GPU into the database, with the creation and insertion of GPU operators directly into
the query plan tree.

In summary, the contribution of this work is a flexible and transparent framework to
integrate new GPU enabled operators into a existing DBMS. It was possible to easily de-
velop a GPU sort operator with this framework, showing that this architecture is extensible
to new operators. We believe that this framework will allow a new approach to integrate
GPUs into existing databases, and therefore achieve more energy efficient DBMS.

The rest of this work is organized as follows: Conceptual basis of energy proportion-
ality, WattDB and GPU are presented in chapter 2. The GPU framework implementation
details of the copy operations, how to overcome the CUDA limitations and the device op-
erator model are presented in chapter 3. An experimental GPU sort operator is explained
in chapter 4. Chapter 5 ends this work, showing the main contributions and presenting
suggestions for future work.
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2 CONCEPTUAL BASIS

The following topics are presented in this chapter: The concept of energy proportion-
ality, why today’s hardware does not achieve it and how a software solution can reach it.
The WattDB project and how the several nodes works together. General purpose compu-
tation on GPUs and CUDA are presented, showing this architecture and why GPUs are
more energy efficient than CPUs. In the end final thoughts are discussed.

Energy proportionality and WattDB are presented to understand the context of the
framework. GPUs, CUDA and the limitations of the GPU architecture are shown to un-
derstand the need of a GPU framework in WattDB, which is confirmed by further imple-
mentation of a sort operator.

2.1 Energy proportionality

Ideally, power consumption of a computer system should be determined by its uti-
lization. However, as seen in Figure 2.1, the observed power utilization of most of the
systems does not behave like this. This leads to energy waste when the system is not at
high utilization rates.

Figure 2.1: Lack of energy proportionality in today’s hardware (Härder et al. 2011).
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Energy proportionality is the ideal behavior of spending just the required energy
amount, proportionally to the system load. Major hardware components are not energy
proportional. The RAM, for instance, will always use the same amount of energy to
maintain the data with refresh intervals, even if just a small percentage of the memory is
being used. Although the energy consumption rises linearly when installing more mem-
ory chips, the consumption will remain the same even if just a small percentage of the
memory is allocated. It is also not possible to just switch of RAM chips, especially in the
course of DBMS processing, because they have to keep large portions of DB data close to
the processor. The hard disk drive is another type of non energy proportional component.
It needs to be constantly spinning, no matter how full it is, or how much IOPS are being
performed.

CPU is one of the few energy proportional components in a computer system, but rep-
resent just a small slice of the consumption. The non-proportional behavior of most of the
other hardware components makes the overall system non energy proportional. An energy
proportional system would help companies to spare significant amounts of money from
energy costs, while also helping reduce their carbon print. Google servers mostly reach an
average CPU utilization of 30%, but often even less than 20% (Hoelzle e Barroso 2009).
Figure 2.1 shows that at this load, power consumption is still around 90%, causing the
system to use 300% more energy than needed.

2.2 WattDB

It is impossible to achieve energy proportionality with a single large server. To over-
come the hardware limitation, a new server design is needed. WattDB is a distributed
energy-proportional database cluster of wimpy nodes. The energy-proportional behavior
is achieved using several small-scale server nodes (such as wimpy nodes
(Andersen et al. 2009) or Amdahl blades (Szalay et al. 2010)) at high load, that can dy-
namically be turned on or off. When the overall cluster utilization rises, more nodes are
attached to the cluster, and when it lowers, nodes are removed, in a way that all the nodes
will always have a high load. Thus, an approximation of the energy proportional line is
created as seen in Figure 2.2.

The cluster consists of 10 identical nodes. Two of them have 4 hard drives attached
to provide persistent storage to the cluster, and are called data nodes. The other nodes, or
compute nodes, can access the data through a 1Gb Ethernet switch. A dedicated master
node is also attached to the Ethernet switch, and provides an SQL interface to the cluster.
The overall cluster configuration can be seen in Figure 2.3

Each node can be considered an Amdahl-balanced (Szalay et al. 2010) node. They
have 2GB of RAM, an Intel Atom D510, and the operating system is loaded from an USB
stick. The data nodes have a low powered 250GB hard drive disk. This cluster configu-
ration needs a software. WattDB manages node switching, with feedback information of
each node, providing the proportional behavior. WattDB is also responsible to distribute
the queries over the cluster, assuring a high load in each node.

WattDB is still under development, but is already able to process simple distributed
queries over the nodes with an energy proportional behavior. The power consumption
of WattDB is proven to be smaller than single oversized servers, and the performance
of wimpy nodes is also better than a single server configuration (Schall e Hudlet 2011).
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Figure 2.2: Approximate energy proportional behavior of WattDB.

Figure 2.3: Cluster hardware layout (Schall e Hudlet 2011).

Therefore, WattDB is a proof that wimpy nodes are a good solution to achieve energy
proportionality.

2.3 GPGPU and CUDA

The use of general purpose computation on GPU started when OpenGL, DirectX and
similar APIs started to implement pixel shaders, which allows transformation of graphic
textures with a short parallel program. Textures are matrices of floating point numbers that
represent pixels. With shaders, floating point parallel computation capabilities was added
to the GPU, and after some time, it made the GPU as flexible to program as CPUs. Seeing
the interest of general purpose computation on GPU, NVIDIA1 introduced in February of
2007 the CUDA SDK, which is currently a widely adopted parallel computing architec-

1www.nvidia.com
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ture for GPU computing.

The higher energy efficiency of GPU is possible due to their simpler architecture de-
sign. Since the GPU is a heavily parallel architecture, as we can see in Figure 2.4, it
devotes more silicon area to several parallel ALUs. Less area is dedicated to control and
cache, and that way its possible to achieve much more FLOPS with much less energy
consumption with a simpler architecture.

Figure 2.4: CPU and GPU Hardware architecture (NVIDIA 2008).

I will be using CUDA to develop in GPUs. It has the drawback of being compat-
ible only with NVIDIA cards, but there exists some not perfect, tools that can con-
vert CUDA code to OpenCL (Swan: A simple tool for porting CUDA to OpenCL 2012),
and NVIDIA recently announced that it will open up the CUDA platform by releasing
source code for the CUDA Compiler (CUDA Platform Source Release 2012), that turns
the CUDA platform limitation problem less significant.

When the GPUs where designed, it was supposed that it would only do graphic op-
erations. For this reason, it has a separate memory for storing graphics related data, like
the frame buffer, sprites, textures or polygon meshes. This kind of data is usually loaded
once, and then manipulated by the GPU, and does not matter the CPU.

The memory model of the GPU makes it impossible to access it is memory from the
CPU, and the CPU memory from GPU. This is a problem for general purpose compu-
tations on GPU (GPGPU) since we want to be able to have the data available in both
processing units. To solve this, constant data copies should be done between the two
memories. This leads to memory copy bottlenecks (NVIDIA 2008), because data are
always being copied from one memory to the other.

To compute over the data stored in GPU, we normally set one CUDA thread to be
responsible of a single element of an array. So if there is a 1 million elements to be
computed, each thread will be responsible for one of this element. That is why CUDA is
a SIMD architecture.

CUDA proceadures are defined as special functions called kernels. This kind of
functions are GPU entry-point functions. This mean we can call this function from the
CPU, and then it will start running in GPU. To define a kernel we use the special word
__global__, wich is a CUDA extension of C:

__global__ void myKernel(int data[], size_t length);
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Figure 2.5: Thread Block and Grid (NVIDIA 2008).

To call this function, we first need to understand the threads hierarchy of CUDA. As
we can see in Figure 2.5, threads are organized in 2 levels of groups. The first level is
called Block, and they are a group of threads. The second level is a Grid, which is a group
of Blocks.

When calling kernels, we can define the number of threads per block, and block per
grid. Parallelism occurs in the grid. All cores will execute a different block at the same
time. Therefore, all threads inside the same block will be executed sequentially by the
same core.

To specify the number of threads that will run, we use the following CUDA extension:

myKernel<<<gridDimension,blockDimension>>>(myData, dataSize);

Where gridDimension and blockDimension, can be either an int or CUDA’s dim3, a
vector of size used to represent 2D or 3D Grids or Blocks. Note that this syntax extensions
will only work with the CUDA compiler, and will throw a compilation error if compiled
with gcc/g++.

Even with all the drawbacks of CUDA, that are introduced with its simpler architec-
ture, it offers a great platform for parallel computation, and since it is proved that the
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performance per watt of GPUs are higher that CPUs, we believe that CUDA can help
WattDB to become more energy efficient.

The CUDA model assumes that the CUDA process executes on a physically separate
device (GPU), that works as a co-processor of the host (CPU) that runs the C program.
The CUDA model also assumes separate memory spaces, referred as host memory and
device memory. This terms are important to understand the separate memory model of
CUDA.

2.4 Final remarks

Today’s servers does not achieve the proportionality, because most of the hardware
components are not energy proportional. WattDB tries to become energy proportional by
approximating the energy proportional behavior with multiple non energy proportional
computing nodes.

In this work, GPGPU is integrated into WattDB. The objective is to provide parallel
computation power to some parallelizable operations of the DBMS. The advantage of
using the GPU in WattDB context is the high energy proportionality of the GPU. To be
able to use the GPU in database systems, a GPU framework have been developed to allow
the development of parallel operation in WattDB. The implementation is for WattDB, but
design is not limited to it, and can be extended to other DBMS.
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3 GPU FRAMEWORK

The objective of this chapter is to explain the GPU Framework architecture. Main
problems related to the CUDA model and WattDB architecture are discussed and their
solutions are presented. The next sections are organized as follows: An overview of
the proposed framework is presented in section 3.1. Section 3.2 explains the volcano
tuple architecture of WattDB and how it is implemented in GPU. Section 3.3 explains
copy operators that converts normal tuples to GPU tuples. Section 3.4 explains the query
plan modes, how the copy operators dictates them and why this is relevant to the new
GPU operators. Section 3.5 discusses technical limitations of the CUDA programming
language and how to overcome them. Concluding remarks are presented in section 3.6.

3.1 Overview

The objective of this framework is to create a flexible platform to develop GPU
database operators in WattDB. Although one could manually port each operator to work
with CUDA, the framework wraps the GPU into a easy to use interface hiding the major
structural differences and low-level programming bureaucracy of the GPU and provides
standard interfaces to the new GPU operators. That way, a easy to use environment is
provided to create new operators, taking CUDA limitations and implementation details
away from the programmer.

Figure 3.1 shows an overview of the framework architecture. The WattDB container
represent part of existing WattDB architecture that matters to the framework, that is, the
query plan, the operators and tuples. The new framework provides a platform that simpli-
fies the use of the GPU. The new GPU database operators can be extended to user-defined
operators, such as the GPU sort operator that we have implemented to validate the frame-
work. The user-defined GPU operators should use user-defined functors to control the
operator behavior. GPU operators use GPU tuples, which are similar to existing WattDB
tuples, but are allocated in GPU memory space. At least, the framework provides copy
operators, that convert WattDB tuples to GPU tuples.

In older CUDA architectures, all memory management should be made on host side,
using cuda_malloc and cuda_free functions. This means that when code starts running
on GPU, it could not allocate of deallocate memory. The new CUDA Fermi architec-
ture allows the use of free and malloc functions inside device code. That allowed the
straightforward translation of WattDB Tuples to DeviceTuples and allows a much bigger
encapsulation, so the DeviceTuples are responsible for allocation of DeviceValues, and
DeviceValues responsible for the actual data, which would be impossible without device
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Figure 3.1: Framework architecture overview.

side memory management.

3.2 Device Tuples

WattDB represent database tuples using Volcano style Tuples (Graefe 1994). WattDB
operators depend on the Tuples and Values implementation. This classes stores the data
that will be used by the operators. Each Tuple holds a set of Values, and each Value have
a reference to the memory area containing the actual data, as seen in Figure 3.2.

Figure 3.2: Current Tuple, Value and data implementation in WattDB.

Since now we use the GPU memory, DeviceTuples and DeviceValues will be added
to WattDB. This classes will hold the data stored on GPU. This classes will need to be
allocated on GPU memory, and are responsible for all memory management of the data.
DeviceOperators will, although, be allocated on CPU memory because the query opti-
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mizer needs to have access to them, in order to create the query plan. This is better
explained in section 3.4. Figure 3.3 shows the DeviceOperator being allocated on CPU
and holding reference to DeviceTuples and DeviceValues, being allocated in GPU.

Figure 3.3: New Device Classes.

The new DeviceTuples does not replace the old WattDB tuples. Both kind of tuples
are present in the database. WattDB will not be aware of the existence of the new Device-
Tuples because the DeviceOperators encapsulate them. This allows minimum change to
the existing code of WattDB, making the integration process very easy.

3.3 Copy operators

CUDA has a separate memory for the GPU. Because of hardware limitation, that is,
no DMA access from device to the system memory, the device cannot access data stored
on host memory, and vice-versa. The only way to make data available in both processing
units is by doing data copies.

The separate CUDA memory model is the reason to create a second type of tuples in
WattDB, the DeviceTuples. With two types of tuples present in the system, a mechanism
is needed to transport data from WattDB tuples, to DeviceTuples. The data copies needs
to be done in an easy way to the programmer, to provide a good GPU framework for
WattDB.

In CUDA, to copy data between CPU and GPU, there is the cudaMemcpy function
that is called called by the host:

cudaError_t cudaMemcpy( void * dst,
const void * src,
size_t count,
enum cudaMemcpyKind kind );

Where dst is the destination pointer, src the data source pointer, count the number of
bytes, and kind the kind of copy that is intended:
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cudaMemcpyHostToHost Host -> Host
cudaMemcpyHostToDevice Host -> Device
cudaMemcpyDeviceToHost Device -> Host
cudaMemcpyDeviceToDevice Device -> Device
cudaMemcpyDefault Default virtual address space

The framework will take care of the low-level CUDA memory management, using
two new databases operators: CopyTo and CopyBack. CopyTo copies and convert an
entire stream of tuples from Host to Device, and CopyBack from Device to Host.

The CopyTo and CopyBack operators will be inserted in the query plan to allow the
execution of CUDA code, making the data available in the correct memory. The responsi-
bility of copying the data is now taken away from the programmer, and given to the query
plan optimizer.

3.4 Query Plan

In relational DBMS, the query plan is an execution plan of database operations to
access or modify data. The query plan is normally represented as a tree. Some database
operations are commutative and in other cases, some operations can be added or removed
without changing the execution result. This leads to several different equivalent query
plans with different performances. The objective of building a query tree is to heuristically
find a good performance tree, that is, minimize the database response time and maximize
throughput.

WattDB uses a vectorized Volcano Query Evaluation System (Graefe 1994) imple-
mentation. It has volcano-style operators interface. In wattDB, the query plans are cre-
ated with the ResultOperator objects. ResultOperator can hold their child operators, and
fetches Tuples from them using the next() method, as in Figure 3.4. This operators will
be extended to allow GPU operators. The GPU framework adds the new DeviceOperator,
which works almost the same way as the old WattDB ResultOperator, but holds Device-
Tuples instead of the old WattDB Tuples.

Figure 3.4: Operators, Tuple and Value.
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The vectorized implementation of Volcano Tuples in GPU was made using the Thrust
(Hoberock e Bell 2010) library. Thrust is a C++ template library for CUDA based on
the Standard Template Library which is becoming a standard in CUDA programming, be-
cause it comes already installed with CUDA since version 4.0. It provides a device_vector
implementation, with is equal to the std::vector, but using device memory. It also has some
useful methods like thrust::transform (map), thrust::reduce or thrust::sort. The DeviceTu-
ples are stored using thrust::device_vector.

The complete design can be seen in Figure 3.5. The green classes are the ones added
by the framework. The CPU operators will continue to exists in WattDB, the new device
classes will just be added to WattDB. The DeviceOperator does not aims to replace CPU
operators, both of them are available in WattDB. A query plan can be build with Device-
Operator and CPU ResultOperator at the same time since both of them inherits from the
common Operator class.

Figure 3.5: Adding DeviceTuples, DeviceValues and DeviceOperators to WattDB.

Note that the DeviceOperators will be allocated on CPU, as previously seen in Figure
3.3. DeviceOperators are allocated on Host memory, because the query plan needs to have
access to the operators, just the DeviceTuples, DeviceValues and actual GPU data will be
on device memory.

The copy operators are database operators that will be inserted into the query plan.
They will copy and convert tuples to the right working memory. This strategy of placing
copy operators in the query plan will define the query plan mode. The query plan mode
alternates between host and device mode when placing copy operators, as seen in Figure
3.6. The query plan starts at host mode, usually with the Tablescan operator. If a CopyTo
operator is inserted, the plan will be switched to device mode. If the plan is in device
mode and a CopyBack operator is inserted, the query plan will be switched back to host
mode. Other way to visualize the copy operators is interpreting them as a bridge for the
CPU and GPU query execution flow, as seen in Figure 3.7. Note how the position of the
Next() interface change between GPU and CPU, before and after the copy operators in
Figure 3.7.
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Figure 3.6: Query plan modes.

It is interesting to note that CopyTo is a DeviceOperator, as seen in 3.5, but CopyBack
is a WattDB host Operator. This is not obvious in first sight, but it is that way because
CopyBack returns WattDB host Tuples, thus, needs the next interface of an WattDB host
Operator. We can see this also in Figure 3.7. where next interface can be seen as the lines
that connect the operators.

To allow the execution of the WattDB host operators, the query plan must be on host
mode, and to allow device operators, on device mode. This allows the coexistence of both
host and device operators in one database, and provides a flexible architecture to make
the choices between host and device.

With the query plan mode, the programmer can write GPU database operators sup-
posing that the data is already in the correct memory. GPU operators will automatically
use GPU memory, and the CPU operators, the CPU memory.

WattDB Operators needs to be rewritten as DeviceOperators to enable parallel execu-
tion advantage of the GPU. This translation needs to be done manually translating already
existing WattDB Operators. This will be, although, a straightforward translation because
both uses Volcano style Tuples, and when using the DeviceOperators the Tuples will be
already on the right memory thanks to the Copy Operators and plan modes. The main
difference is that the DeviceOperator will have a parallel CUDA functor defined in the
GPU memory that can be accessed via the CPU using a map reduce strategy. This will be
better explained in chapter 4, where a Device Sort Operator is implemented.

With a hybrid tree, there will be the possibility to choose between CPU or GPU oper-
ators. To decide between CPU or GPU operators, energy consumption of the GPU should
be taken into account in the cost prediction calculation of a query tree. GPU operations
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Figure 3.7: Example of a data flow in the framework.

normally spends more energy than CPU, but they normally run faster than CPU. The cost
calculation could be changed to predicted_cost = energy_consumption * predicted_time
in order to include the energy of the GPU, where energy_consumption is a different con-
stant for CPU and Device operators.

At least, not all operations are highly parallelizable and also just by installing a GPU
in a system makes it spend more energy. An heterogeneous configuration of the nodes of
WattDB could be useful, meaning that just some of them will have a GPU installed. The
nodes that have a GPU can be switched off when there are no parallelizable queries. The
best way to do this is adding awareness of the GPU to the monitoring system of WattDB
(Dusso 2012).

3.5 Dealing with C for CUDA limitations

The programing language for CUDA is Nvidia’s “C for CUDA”. It is C with Nvidia
extensions and certain restrictions. CUDA source files have a .cu extension, and are pro-
cessed with the Nvidia compiler nvcc. Not all standard C is compatible with nvcc, and
there are some techniques to deal with this differences.

One big restriction of C for CUDA is that all device function calls are inlined. The
first consequence of this is the inexistence of recursion. The second is not being able to
call device functions between different CUDA source files.

The inexistence of recursion consequence can simply be fixed by transforming the
recursive algorithms into iterative, and if needed, implementing a stack of arguments and
context variables. There where no recursive code in the operators, tuples or values of
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WattDB, therefore this technique was not used.

Figure 3.8: Using one file to be able to call device functions between different files.

The second consequence, the impossibility to call device functions between different
CUDA source files, occurs because with all functions being inlined, a device side code
linker is not needed. The resulting objects of the compilation of different CUDA source
files would not be able to see each other. To overcome this restriction, a third file, that
includes all other CUDA source files has been created, resulting just one big object, and
one compilation step for all .cu files, as seen in Figure 3.8.

Another problem that needs to be solved is the use of two compilers. Since g++ can
not compile CUDA, and nvcc does not compile all standard C, two compilers are really
needed.

The advantage of nvcc is that it can produce an output object file that can be linked
with g++.

The .h of the .cu file will also be compiled by the g++, therefore needs to be created in
a way that can be processed by both compilers. Some CUDA extensions are not compati-
ble with the C default syntax. This extensions includes, the definition of device functions,
call of device function, device memory management functions. On the other hand, some
default C can not be compiled with nvcc, like templates.

To create the compatible common file, #ifdef __CUDACC__ guards where used to
hide code from one compiler or other. The example below shows the next interface of
a DeviceOperator, that is invisible to the g++, because it uses DeviceTuples that are not
available in CPU.

class DeviceResultOperator {
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public:
#ifdef __CUDACC__
virtual bool next(

thrust::device_vector<DeviceTuple>& outDT ,
thrust::device_vector<DeviceTuple*>& outDTR

) = 0;
#endif

};

The next example show how to hide the boost::spirit (Boost C++ Library) library,
which fails to compile under nvcc:

#ifndef __CUDACC__
#include <boost/spirit/include/qi.hpp>
#endif

This code will create two different interfaces for the DeviceResultOperator class. One
for the GPU, and other for the CPU. The common .h file, and all this process can be seen
in Figure 3.9.

Figure 3.9: Using two compilers in a build process to integrate CUDA in an existing
application.
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Joining the two methods of creating a common .h file with two different interfaces,
and using just one file to include all CUDA file, we achieve the resulting build process
that can be seen in Figure 3.10.

Figure 3.10: Resulting process to integrate CUDA in WattDB.

3.6 Concluding Remarks

In this chapter, the architecture of the Framework was presented, explaining how the
copy operators alternate the query plan between host and device mode, allowing the exe-
cution of WattDB Operators or DeviceOperators. Technical workarounds for the CUDA
programming language are also part of the framework. Everything together provides a
comfortable environment to develop new DeviceOperators in WattDB.

The main contribution is that the framework solves a significant amount of the prob-
lems when programming in CUDA, allowing the programmer to focus only on the de-
velopment of the DeviceOperator. Another contribution of this framework is that it does
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not require the change of the existing architecture of WattDB, providing a modular and
extensible architecture that can be used in other databases besides WattDB.

Other contribution is the data copy optimization. The copy of data is one of the bot-
tlenecks of the GPU operators, but with the new cost prediction formula it is possible
to determine the cost of the copy, and determine if it is worth running in GPU. Also,
with copy being done just once, this bottleneck can be minimized creating a pipeline of
DeviceOperators in the device mode query plan, and reusing data that has already been
copied into the GPU memory.

The main limitation is the lack of a more automated translation from existing WattDB
Operators into DeviceOperators. It is not as simple such as parallelizing loops with
OpenMP, but easier when comparing to raw CUDA programming because of the auto-
mated memory copy management.

At last, we believe that this framework resolves major technical issues of the CUDA
programming language, and provides an extensible platform to develop GPU operators
with minimal architecture change for WattDB. Also, since this framework provides a
modular architecture, it could be used in other DBMS as well.
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4 EXPERIMENTAL EVALUATION

The objective of this chapter is to validate the GPU Framework, proving that it is easy
to develop GPU operators with it and that GPU operations can be more energy propor-
tional than CPU operations. The validation has been done implementing a DeviceSort
operator. The next sections are organized as follows: The new DeviceSort operator is
explained in section 4.1. Experiments configuration are presented in section 4.2 and ex-
periments results are described in section 4.3.

4.1 Device Sort operator

In this section, the Device Sort operator is described. At the implementation time
of this operator, WattDB did not had a host sort operator, so it was also developed to
compare results, as shown in section4.3. After the development of the host sort operator,
it was translated as a DeviceOperator. This operator fetches unordered tuples and returns
them in order. Both implementations fetches all tuples from the query tree child operator,
orders all tuples properly, stores the ordered result, and returns data to the parent operator
on demand. This can be seen in Figure 4.1.

Figure 4.1: Sorting operator overview.
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Since table columns are mapped as values, the description of the values that are going
to be sorted needs to be passed when the sort operator is instantiated. That is because the
SQL ORDER BY statement requires a list of columns to be sorted. The tuple description
consists of the value id and value type.

To perform the sort on host operator, the Standard Template Library sort was used
(std::sort). In order to use this function, a custom comparator functor is created using the
value ordering data passed in the instantiation of the sort operator. This allows the sorting
of any kind of value.

After the host sort operator was completely tested and working, the DeviceSort op-
erator was implemented translating the host operator. The thrust (Hoberock e Bell 2010)
library was used to quickly translate the device sort operator, using the thrust::sort method.
The DeviceSort operator can deal with different types of DeviceValue types of data, the
same way the host operator does, thanks to the use of a custom comparator functor, but
this time, instantiated on device. These are the main differences between host and device
sort: std::sort versus thrust::sort, standard functor versus device functor, and WattDB Tu-
ples versus DeviceTuples. Since the interfaces of all this components are very similar, the
translation was really easy.

Since the DeviceTuples of DeviceOperator are stored using Thrust::device_vector, it is
highly encouraged to use thrust::transform (map) and thrust::reduce functions to code the
device operators. Using map-reduce, the translation process of a host Operator becomes
a simply definition of one or two device functors that will be used with a map-reduce
strategy using the Thrust methods.

4.2 Experiments Configuration

The objective of the experiments is to validate the framework as correct, easy to use
and energy efficient development platform for WattDB. The experiment has been done in
two phases. The first is the implementation of the device sort, using qualitative measures
to verify if the framework is easy to use. The ease of use is a very important objective
of the framework because it encourages other team members to parallelize any operator,
reducing development time. The second phase uses quantitative measures of the GPU
sort versus CPU sort, comparing time and energy consumption. Time has been measured
using a C++ timing library.

The sorting times where measured in raw sort, using a CUDA quick-sort implemen-
tation (Cederman e Tsigas 2009). The Host sort is std::sort. All tests were made in an
Intel R© CoreTM2 Duo T8300 CPU. The GPU is a GeForce Gt430. Operational system is
Ubuntu Server 10.04 Kernel 2.6.32.

Energy consumption was measured using an energy measurement device designed
for WattDB (Schall e Hudlet 2011), that measures overall system consumption instead
of individual components. The measurement is made with a stream of real time data
send over usb to the computer. 5 system configurations where measured. With no GPU
installed: full idle and at 100% CPU load. With GPU: full iddle, at 100% CPU load and
at 100% GPU load.

Since the query plan builder and cost prediction of WattDB was not completely imple-
mented at the time of creation of the GPU Framework, a virtual query tree was manually
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Figure 4.2: Host and Device Sorting query trees.

build to verify the correctness of the DeviceSort operator. This query plan includes a 1000
random tuple generator operator, a CopyTo operator, the DeviceSort and a CopyBack op-
erator. The same was done with the host Sort operator and results where compared. This
configuration is shown in Figure 4.2.

4.3 Experiments Results

The host Sort operator correctness was checked manually for small sets of data, and
further checked with automated verification for large sets, that is, for a ascendant sort,
the previous value is asserted to be smaller than the current one. No different values for
the same initial sets where found comparing the result of the host Sort and DeviceSort
operator. This proves that the DeviceSort is equivalent to host Sort, and since the host
Sort is proven to be correct, DeviceSort is also correct. This not-so-strict correctness
verification also proves that the copy operators are correct, that is why a validation of a
single experimental DeviceOperator is so important to the overall framework correctness.

Figure 4.3: Energy consumption with and without a GPU installed in a system.

The energy efficiency measures where made comparing CPU operations with the same
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GPU operations. The energy consumption was also measured with and without the GPU
card installed. Figure 4.3 shows energy consumption growth when installing the GPU in
the system. Installing the GPU gives a 11 Watt constant grow in energy consumption. Fig-
ure 4.3 also shows that comparing CPU at 100% and GPU at 100%, energy consumption
is around 3 times higher.

When it comes to sorting times, the speed on GPU is 10 times faster as the CPU.
Figure 4.4 shows the sorting times measures for different dataset sizes, including the data
copy to and back from GPU. This means that the GPU is more energy efficient to sort
than the GPU, because it sorts 10 times faster while using 3 times more energy, which
gives 10 ÷ 3 ≈ 3.3 times more energy efficient than the CPU.

Figure 4.4: Sorting times in CPU and GPU.

The ease of use can be measured with the amount of code and architecture details that
the programmer should worry about when programming in CUDA. Table 4.1 shows that
the framework abstracts a lot of low level information, making the programming much
easier and faster.

GPU Framework Raw CUDA
CUDA threads architecture X
Memory Copy X
CUDA object linking X
CUDA memory allocation X
Basic Thrust knowledge X

Table 4.1: Programmer responsibilities.
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5 CONCLUSION

This work described a new GPU Framework architecture to develop GPU operators
in WattDB using CUDA. Experiments show that the framework implementation works
correctly, provides a comfortable platform to develop GPU operators and that the GPU is
more energy efficient than the CPU when they are at full load.

Results show that it is possible to integrate GPGPU in existing DBMS with minimal
architecture change of the existing database. The energy efficiency of the GPU is partic-
ularly interesting for the WattDB project, which needs energy-efficient nodes to provide
an energy-proportional DBMS. The framework also proves that it is possible to provide
an easy to use platform to develop GPU operators, taking away the lower level responsi-
bilities from the programmer when programming CUDA.

Future work includes the development of more DeviceOperators for WattDB. Some
optimizations could also be made on the copy operators, where projections could be added
to copy just the columns needed by the GPU operators. In the SortOperator, for instance,
the copy operators could be aware of the sorting columns, and just copy them to the GPU.
When copying back, original data could be re-build using the unchanged host tuples.

More work can be done taking advantage of the the distributed architecture of WattDB
allowing heterogeneous nodes configurations, equipping just some of them with GPUs,
because not all database operations are highly parallelizable. This way, the GPU could be
constantly at a high load, helping to achieve energy proportionality.
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